论胡塞尔数学现象学的纲领及其被动超越性
发布时间:2018-05-02 13:38
本文选题:数学史 + 数学现象学 ; 参考:《辽宁大学》2016年硕士论文
【摘要】:埃德蒙德·胡塞尔作为现象学的创始人,其理论体系以宏大且精细而著称。胡塞尔一生都在致力于建立一种有别与传统形而上学的“无预设”的哲学,其核心问题在于在“被给予性”的基础上如何能达成哲学上应有的超越。通过对于数学发展史和与现象学有关的理论背景的回顾,可以发现胡塞尔作为数学家和哲学家的双重身份以及从最初就想要为数学进行奠基的理论目标,而这与其在今后在哲学上的建树息息相关。为此,本文着重考察了胡塞尔数学现象学纲领理论的生成历史及其内在结构,而这一结构是胡塞尔整个现象学理论体系的核心,其“被给予性”与超越性的有机结合均在此结构中得以体现。根据上述写作思路,本文分为四个主要部分:第一部分主要回顾了十九世纪与数学现象学理论以及现象学自身发生有关的几何学发展背景,并介绍了在数学现象学以及现象学中加以借鉴的数学方法——公理化;第二部分主要介绍了十九世纪末和二十世纪初期间因悖论而产生的关于数学基础的危机,并介绍了在此基础上所产生的三大数学学派以及哥德尔证明对于三大学派争论的最终回应,其目的是为了与胡塞尔的数学现象学在对待数学基础问题的态度上做出区分和对比;第三部分则主要讨论了胡塞尔数学现象学的纲领结构以及与其有关的问题;第四部分则是在前面三部分讨论的基础上,以现象学中胡塞尔对于称谓的有关分析为例,试图说明被动超越性的结构与数学现象学的纲领结构之间存在同构性,以此在数学现象学结构中突显出被动超越性,从而完成对于本文核心问题的讨论。
[Abstract]:As the founder of phenomenology, Edmund Husserl is famous for his grand and fine theoretical system. Husserl devoted his life to the establishment of a "no Presupposition" philosophy with different and traditional metaphysics. The core problem is how to achieve philosophical Transcendence on the basis of "being given". A review of the history of mathematics and the theoretical background related to phenomenology, we can find the dual identity of Husserl as a mathematician and a philosopher and the theoretical goal that he wanted to lay a foundation for mathematics from the beginning, which is closely related to its future philosophy. Therefore, this article focuses on the investigation of Husserl's phenomenological programme of mathematics. The history of theory and its inner structure are the core of Husserl's whole theory of phenomenology. The organic combination of "being given" and "transcendence" is embodied in this structure. This article is divided into four main parts according to the thinking of the above writing: the first part mainly reviews the nineteenth Century and the mathematical phenomenology. The theory and the background of the development of the geometry of phenomenology, and the mathematical method of mathematical phenomenology and phenomenology, which are used for reference, are introduced. The second part mainly introduces the crisis on the basis of the mathemaics caused by the paradox between the end of the nineteenth Century and the early twentieth Century, and introduces it on this basis. The three major schools of mathematics and the final response of Godel's proof to the argument of the three universities are to distinguish and compare with Husserl's mathematical phenomenology in the attitude towards the basic mathematical problems; the third part mainly discusses the framework of Husserl's mathematical phenomenology and its related issues. The fourth part, on the basis of the discussion in the first three parts, takes Husserl's analysis of appellation in phenomenology as an example, trying to explain the isomorphism between the structure of the passive transcendence and the program structure of mathematical phenomenology, which highlights the transcendence in the mathematical phenomenological structure, thus completing the core problem of this article. The discussion.
【学位授予单位】:辽宁大学
【学位级别】:硕士
【学位授予年份】:2016
【分类号】:O11;B516.52
【相似文献】
相关硕士学位论文 前1条
1 项锐;论胡塞尔数学现象学的纲领及其被动超越性[D];辽宁大学;2016年
,本文编号:1834173
本文链接:https://www.wllwen.com/zhexuezongjiaolunwen/1834173.html