几何大变形桁架结构离散变量优化设计
[Abstract]:In this paper, a discrete variable optimization algorithm of truss structure based on ANSYS platform is developed by using the secondary development function of ANSYS platform and the idea of "relative difference quotient method", and the corresponding ANSYS secondary development program is worked out. It is proved by many examples that the program has high calculation efficiency and good convergence of optimization results. It also proves the feasibility and validity of the discrete variable optimization design of truss structure under ANSYS platform according to the idea of this paper. In addition, this paper presents a new numerical algorithm for the calculation and analysis of geometric large deformation and large span truss structures. In engineering, some long-span structures often produce relatively large geometric deformation due to the special structure or shape of the structure and the characteristics of the working load, but the absolute amount is still small, and the normal operation should be ensured. A linear relationship between stress and strain should be required. The nonlinear theory of geometric large deformation must be applied to the analysis and calculation of this kind of structures. The traditional method of calculating and analyzing this kind of problem is to apply the principle of minimum potential energy to replace the approximate expression of nonlinear geometric equation with large deformation and the linear stress-strain relation into the functional of total potential energy. The functional expression of node displacement is obtained by discretization, and the Euler equation on node displacement is obtained according to the minimization condition of total potential energy, that is, the nonlinear equilibrium equation of node displacement. Because the equation is listed by the deformed node displacement, it is unified and coordinated with the deformation state, but as the equilibrium equation is a nonlinear function of displacement, it is very difficult to solve, especially for complex structures with multiple degrees of freedom. Based on the secondary development of ANSYS platform, the idea of large deformation analysis in this paper is as follows: the two-step iterative approximation is used to harmonize the equilibrium state with the deformation state, and the equilibrium equation and its solution after deformation are established and solved. That is to say, the continuous equation for calculating the displacement of the node is established and solved by the internal force of the known member, and then the equilibrium equation for calculating the internal force of the member is established and solved by the known displacement of the node. Through multiple iterations, the exact solution of nonlinear large deformation structure analysis is obtained, in which the equilibrium state and the deformation state are coordinated and unified. Since the method in this paper only needs to do one structural analysis in the process of geometric large deformation analysis, this point has obvious advantages in the structural optimization design of geometric large deformation. Therefore, the idea of discrete variable optimization design of geometric large deformation truss structure is put forward, and the corresponding analysis is made for flat truss and large span truss. By compiling the corresponding ANSYS secondary development program, the validity, accuracy and efficiency of the proposed method are verified by numerical examples. It is worth mentioning that the analysis of large deformation in this paper can degenerate and analyze the geometric small deformation of truss structures.
【学位授予单位】:同济大学
【学位级别】:硕士
【学位授予年份】:2008
【分类号】:TU323.4
【相似文献】
相关会议论文 前10条
1 吴杰;刘振华;龚铭;张其林;;张弦梁结构优化设计研究[A];第三届全国现代结构工程学术研讨会论文集[C];2003年
2 黄远;李林安;刘文西;;医用不锈钢支架的非线性有限元分析[A];2000年材料科学与工程新进展(上)——2000年中国材料研讨会论文集[C];2000年
3 张希;姚振汉;;MLPG方法在二维几何非线性问题中的应用[A];北京力学会第11届学术年会论文摘要集[C];2005年
4 吴杰;张其林;;基于混合变量的预张力结构优化设计研究[A];第六届全国现代结构工程学术研讨会论文集[C];2006年
5 李利;智浩;李同进;于海蓉;龚奎成;;风洞柔壁喷管中柔板的数值计算[A];第二届中国CAE工程分析技术年会论文集[C];2006年
6 崔玉红;翟雅斌;李文娇;;方形孔结构支架非线性流固耦合数值计算[A];第九届全国生物力学学术会议论文汇编[C];2009年
7 张锐;尚新春;;热弹性材料的空化问题研究[A];北京力学会第十六届学术年会论文集[C];2010年
8 冯启民;高惠瑛;;穿过沉陷区的埋地管线反应分析[A];中国地震学会第六次学术大会论文摘要集[C];1996年
9 郑国发;;空间悬索结构超级单元分析法[A];全国索结构学术交流会论文集[C];1991年
10 李泽;朱志华;;弓式张弦梁结构设计及实验[A];第六届全国现代结构工程学术研讨会论文集[C];2006年
相关博士学位论文 前2条
1 赵旭峰;挤压性围岩隧道施工时空效应及其大变形控制研究[D];同济大学;2007年
2 董科;波在压电层合结构和碳纳米管中的传播特性[D];上海交通大学;2007年
相关硕士学位论文 前10条
1 陈庆;几何大变形桁架结构离散变量优化设计[D];同济大学;2008年
2 秦庆华;三跨连续压力管道经受侧向撞击损伤与破坏的研究[D];太原理工大学;2004年
3 吴少平;固体力学中单位分解方法的研究[D];浙江大学;2007年
4 谢海涛;输电塔结构优化方法研究[D];哈尔滨工程大学;2007年
5 唐菁菁;基于UMAT子程序的织物片变形的几何非线性分析[D];天津大学;2007年
6 黄孝强;深水铺管船管道力学特性研究[D];大连理工大学;2008年
7 陈峰;80吨履带式起重机臂架的有限元分析[D];吉林大学;2009年
8 胡巍玮;有缺陷悬臂梁在阶跃冲击荷载作用下的刚塑性分析[D];同济大学;2006年
9 林恩强;流体—结构耦合数值方法研究及其应用[D];昆明理工大学;2007年
10 郭小东;大型油船结构优化设计研究[D];江苏科技大学;2006年
,本文编号:2225636
本文链接:https://www.wllwen.com/falvlunwen/sflw/2225636.html