农杆菌活体转化技术的优化与高抗草甘膦棉种质的创制

发布时间:2018-01-19 01:13

  本文关键词: 棉花 草甘膦 EPSPS-G6 农杆菌活体转化方法 草甘膦抗性 产量 纤维品质 出处:《浙江大学》2016年硕士论文 论文类型:学位论文


【摘要】:棉花是唯一可由种子生产纤维的农作物,棉花生产需要投入较多劳动力。由于劳动力的转移,我国的人工价格不断上涨,植棉的比较效益和经济效益下降,导致近年我国棉花生产的连年滑坡。我国的棉花生产仍以人工作业为主,其中棉田除草是植棉用工的主要内容之一,占植棉用工的1/3以上。草甘膦(Glyphosate)是一种典型的广谱性、内吸传导型灭生性除草剂,是杂草控制的首选除草剂。本研究将具有自主知识产权的抗草甘膦除草剂基因(EPSPS-G6)构建进植物表达载体,用农杆菌活体转化方法将目的基因转入陆地棉推广品种中棉所49,创制高抗草甘膦棉花种质系,分析其抗性表现及相关农艺性状,探讨其生产应用前景。主要研究结果如下:1、利用本实验室构建的表达载体pCAMBIA1300-EPSPS-G6,酶切获得目的基因EPSPS-G6.并与空载体pCAMBIA2301连接构建棉花高效表达载体——pCAMBIA2301-EPSPS-G6,去除原载体中的NPII筛选标记基因,将目的基因作为筛选标记。2、对本实验室创制的农杆菌活体转化方法进行优化。结果表明,含50mg/L乙酰丁香酮(acetosyringone,AS)的转化液可将阳性率提高至22.18%,是对照(9.72%)的2.28倍。此外,不同转化时间转化效率差异显著,其中开花当天中午12:00~14:00转化得到阳性率最高(22.18%),下午13:00~15:00次之(18.86%),上午8:00~10:00转化效率最低(11.29%)。3、采用优化的农杆菌活体转化方法,将EPsPS-G6基因导入到陆地棉推广品种——中棉所49,共收获转化种子14.3 kg,T0转化植株经20 mM草甘膦喷施,阳性率达22.18%。经PCR验证,共获得了35株含EPSPS-G6基且抗草甘膦的To转基因植株。4、T1转基因后代的抗性分离比例从1/4-3/4不等。对T1阳性植株进行自交,按单株收获,T2抗性稳定材料占19.8~32.1%,基本符合一对杂合基因分离的规律。5、田间草甘膦抗性水平和莽草酸含量结果表明,转EPSPS-G6基因棉花种质系可抗3倍以上的推荐浓度,其抗性水平明显优于美国抗草甘膦品种和本实验室创制的第一代抗草甘膦棉花种质系,其中EPSPSG6-501种质系抗草甘膦的能力最强。6、转EPSPS-G6基因棉花种质系籽棉产量、皮棉产量、衣分均与中棉所49近似;铃重、籽指略高于对照;株高与对照近似;果枝数略低于对照;单株铃数与对照一致。纤维品质检测结果表明,转EPSPS-G6基因棉花种质系的纤维长度和整齐度略优于对照;马克隆值与对照在同一品级且略好于对照;伸长率略低于对照;断裂比强度与对照相同。说明外源基因对于转基因棉花种质系的产量、农艺性状和纤维品质无明显影响。7、调查了金华地区的杂草发生情况与防控成本,为抗草甘膦棉花品种的应用提供依据。结果表明,金华地区棉田杂草以牛筋草、马齿苋和小飞蓬为主,化学除草可节省植棉除草用工开支约1000元/亩,抗草甘膦棉花品种的生产应用可取得显著的经济效益,具有广阔的生产应用前景。
[Abstract]:Cotton is the only crop that can produce fiber by seed. Cotton production needs more labor force. Due to the transfer of labor force, the labor price of our country is rising, and the comparative benefit and economic benefit of cotton planting are decreased. In recent years, cotton production in China has been declining year after year. The cotton production in China is still dominated by manual work, among which weeding in cotton fields is one of the main contents of cotton planting. Glyphosate of glyphosate is a typical broad-spectrum, endo-absorption-conductive herbicide. In this study, EPSPS-G6, a glyphosate resistant herbicide gene with independent intellectual property rights, was constructed into plant expression vector. Using Agrobacterium tumefaciens transformation method, the target gene was transferred to Zhongmiansuo 49, a upland cotton extension variety, to create germplasm lines with high resistance to glyphosate, and to analyze its resistance and related agronomic characters. The main results are as follows: 1, using the expression vector pCAMBIA1300-EPSPS-G6 constructed in our laboratory. The target gene EPSPS-G6 was digested and ligated with empty vector pCAMBIA2301 to construct pCAMBIA2301-EPSPS-G6. The NPII screening marker gene was removed from the original vector and the target gene was used as the screening marker. 2. The transformation method of Agrobacterium tumefaciens was optimized. The conversion solution containing 50 mg / L acetosyringone AS) could increase the positive rate to 22.18, 2.28 times as much as that of the control group (9.72%). There were significant differences in transformation efficiency among different transformation times, and the highest positive rate was obtained at 12: 00: 14: 00 at noon on the flowering day. At 13: 00 in the afternoon, 15: 00 followed by 18.860.The conversion efficiency of 8: 00 to 10: 00 in the morning was the lowest, 11.29 and 3, and the optimized transformation method of Agrobacterium tumefaciens in vivo was adopted. The EPsPS-G6 gene was introduced into the upland cotton cultivar Zhongmiansuo 49, and the transformed seeds were harvested and transformed by spraying glyphosate with 20mm glyphosate. The positive rate was 22.18%. 35 transgenic plants containing EPSPS-G6 and glyphosate resistant to glyphosate were obtained by PCR. The percentage of resistance segregation of T1 transgenic progenies ranged from 1 / 4 to 3 / 4. For T1 positive plants, 19.832. 1% of the resistant stable materials were harvested per plant. The results of glyphosate resistance level and shikimic acid content showed that transgenic cotton germplasm lines with EPSPS-G6 gene could resist more than 3 times the recommended concentration. Its resistance level was obviously superior to that of the American glyphosate resistant variety and the first generation of glyphosate resistant cotton germplasm developed in our laboratory, and the EPSPSG6-501 germplasm line had the strongest resistance to glyphosate. The yield of seed cotton, lint yield and lint percentage of cotton germplasm lines with EPSPS-G6 gene were similar to those of Zhongmiansuo 49. The boll weight and seed index were slightly higher than those of the control. Plant height was similar to that of control. The number of fruit branches was slightly lower than that of the control. The results of fiber quality test showed that the fiber length and uniformity of cotton germplasm lines with EPSPS-G6 gene were slightly better than that of the control. The micronaire value was in the same grade as the control and was slightly better than that of the control. The elongation was slightly lower than that of the control. The breaking ratio intensity was the same as that of the control. The results showed that exogenous gene had no significant effect on yield, agronomic characters and fiber quality of transgenic cotton germplasm lines. The occurrence and control cost of weeds in Jinhua area were investigated. The results showed that the main weeds in cotton field in Jinhua area were Herba canola, Portulaca oleracea and Prunus vulgaris, and chemical weeding could save about 1000 yuan per mu in the cost of weeding and weeding. The production and application of glyphosate resistant cotton varieties can obtain remarkable economic benefits and have a broad prospect of production and application.
【学位授予单位】:浙江大学
【学位级别】:硕士
【学位授予年份】:2016
【分类号】:S562

【相似文献】

相关期刊论文 前10条

1 华水金;袁淑娜;邵明彦;倪密;王学德;蒋立希;祝水金;;抗草甘膦棉花研究进展[J];分子植物育种;2007年04期

2 杨子山;;抗草甘膦大豆对抗草甘膦棉花的干扰作用[J];中国棉花;2009年11期

3 苏少泉;抗草甘膦作物的创制与发展[J];世界农业;2004年03期

4 王宏伟;梁业红;史振声;张世煌;;作物抗草甘膦转基因研究概况[J];作物杂志;2007年04期

5 苏少泉;;抗草甘膦作物的发展与草甘膦使用中若干问题[J];农药研究与应用;2007年04期

6 叶萱;;草甘膦对抗草甘膦转基因作物病害的作用[J];世界农药;2008年04期

7 卜贵军;刘洪梅;李英;崔琳;王学东;;草甘膦对大豆超微结构及光合指标影响的研究[J];电子显微学报;2008年04期

8 杨子山;;二代抗草甘膦棉田长芒苋化除适期试验[J];中国棉花;2009年09期

9 苏少泉;;转基因抗草甘膦作物的新进展[J];现代农药;2009年06期

10 朱元招;王凤来;尹靖东;;抗草甘膦大豆及豆粕营养成分和抗营养因子研究[J];营养学报;2010年02期

相关会议论文 前10条

1 韩思宁;金龙国;陶波;邱丽娟;;抗草甘膦真菌的分离及其抗性基因的表达[A];第23届全国大豆科研生产研讨会论文摘要集[C];2012年

2 刘东军;张锐;孟志刚;郭红媛;程海刚;王成社;郭三堆;;抗草甘膦基因突变体的克隆及表达[A];全国作物生物技术与诱变技术学术研讨会论文摘要集[C];2005年

3 刘东军;张锐;孙国清;闫喜中;胡建斌;王成社;郭三堆;;抗草甘膦基因的克隆及其在在棉花中的表达[A];全国作物生物技术与诱变技术学术研讨会论文摘要集[C];2005年

4 魏守辉;李香菊;张朝贤;黄红娟;崔海兰;;抗草甘膦杂草发生现状及转基因大豆田草害治理策略[A];粮食安全与植保科技创新[C];2009年

5 刘琦;李希臣;刘昭军;雷勃钧;;抗草甘膦转基因大豆基因漂移的研究[A];第五次全国植物分子育种代表大会暨学术交流会论文集[C];2008年

6 杨兆光;刘亚平;肖远龙;;抗草甘膦棉花的杂种优势研究[A];中国棉花学会2013年年会论文集[C];2013年

7 郝献领;李志强;张敏;陈洪涛;张延忠;李泽田;;室内对转基因抗草甘膦棉花品系鉴定方法[A];中国棉花学会2013年年会论文集[C];2013年

8 顿保庆;金丹;梁爱敏;陆伟;林敏;;新型高抗草甘膦EPSP合酶基因的拆分和重建[A];2005热带亚热带微生物资源的遗传多样性与基因发掘利用研讨会论文集[C];2005年

9 潘爱虎;张大兵;潘良文;陈家华;袁政;梁婉琪;;转基因抗草甘膦油菜的实用PCR检测方法[A];全国作物细胞工程与分子技术育种学术研讨会论文集[C];2003年

10 朱元招;李德发;尹靖东;王凤来;;抗草甘膦转基因大豆PCR定量检测研究[A];中国畜牧兽医学会2004学术年会暨第五届全国畜牧兽医青年科技工作者学术研讨会论文集(上册)[C];2004年

相关重要报纸文章 前3条

1 方舟子;神秘的“不明病原体”[N];新华每日电讯;2013年

2 本报记者 马爱平;我国抗除草剂转基因技术突破重围[N];科技日报;2012年

3 实习记者 江华;2,4-滴展现新空间[N];农资导报;2012年

相关博士学位论文 前3条

1 赵特;一种抗草甘膦基因的发现和抗草甘膦转基因水稻的培育[D];浙江大学;2008年

2 金丹;新型高抗草甘膦EPSPS基因的克隆及草甘膦N-乙酰转移酶的活性位点鉴定[D];四川大学;2007年

3 燕树锋;转基因抗草甘膦棉花种质系的创造及利用[D];浙江大学;2011年

相关硕士学位论文 前10条

1 黄洁琼;农杆菌活体转化技术的优化与高抗草甘膦棉种质的创制[D];浙江大学;2016年

2 谭苗苗;转g10evo基因抗草甘膦大豆的研究[D];浙江大学;2016年

3 刘吉焘;棉花抗草甘膦基因的初步定位及草甘膦诱导花粉不育的生理生化特性研究[D];南京农业大学;2013年

4 李敬娜;农杆菌介导的抗草甘膦基因玉米遗传转化研究[D];海南大学;2010年

5 赵哲;转基因抗草甘膦大豆对草甘膦代谢产物(AMPA)的生理反应[D];东北农业大学;2012年

6 楚宗艳;棉花抗草甘膦基因的表达及功能鉴定[D];中国农业科学院;2008年

7 卜贵军;草甘膦对大豆叶片生理和形态结构的影响[D];东北农业大学;2009年

8 董流昕;转基因抗草甘膦大豆参比分子的构建[D];北京林业大学;2005年

9 李卫国;棉花抗草甘膦体细胞无性系变异筛选技术研究[D];华中农业大学;2008年

10 于海涛;抗草甘膦真菌的分离及EPSPS基因克隆与表达研究[D];东北农业大学;2012年



本文编号:1441977

资料下载
论文发表

本文链接:https://www.wllwen.com/falvlunwen/zhishichanquanfa/1441977.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户be4e6***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com