巴谢河流域滑坡易发性评价
本文关键词: 巴谢河流域 滑坡 易发性评价 出处:《兰州大学》2017年硕士论文 论文类型:学位论文
【摘要】:巴谢河流域作为黄土高原陇西地区临夏盆地滑坡密集发育的典型区,区内滑坡分布广泛、活动频繁,威胁着当地人民的生命财产安全。为有效地制定区域滑坡灾害宏观防治政策,就需要从区域上对滑坡灾害进行易发性区划,GIS的运用极大地提高了滑坡易发性评价的工作效率。基于遥感解译与野外调查,查明了巴谢河流域滑坡的位置、数量、分布及规模等,总结了流域内滑坡的类型及分布特征。通过遥感、地形与地质等多源数据集成,实现滑坡影响因素的提取,选用斜坡单元作为评价单元,定量地分析了滑坡与其影响因素间的关系。从全区249处滑坡中随机选择70%的样本数据用于构建EBF、频率比及确定性系数3种评估模型,而剩下30%的滑坡点用于模型的验证,绘制出滑坡易发性分区图。同时利用成功率曲线与预测率曲线对评价结果进行精度检验,探讨了模型的可信程度。获得的主要研究成果如下:(1)流域内滑坡规模以大、中型为主,厚度以中、深层居多,沿河流沟谷线性展布;河流两岸滑坡呈不对称发育,且在其两岸沟口处多发育大型滑坡;在黄土厚度大的中、下游地段多分布有大型、深层滑坡;同时显现出同一地点复活性较强的特性;滑坡在时间上具有多期性,后期发生的滑坡常改造前期形成的滑坡。(2)滑坡分布与地形地貌关系密切,高程2000~2200m、坡度15°~30°、起伏度100~200m、阳坡坡向、切割深度50~100m及沟谷密度1~2.5km/km2的范围内,滑坡尤为发育;滑坡与地层岩性、植被、人类活动等有较好的对应关系,其中岩性为马兰黄土及泥岩、NDVI在0.2~0.3与距离道路600m的范围内滑坡易于发生。(3)把区内滑坡易发性程度分为5个级别:极低易发、低易发、中易发、高易发、极高易发。通过计算得到,EBF模型、CF模型、FR模型成功率曲线下方面积分别为0.8038、0.7924、0.8088,预测率曲线下方面积分别为0.8056、0.7922、0.7989。可以看出,3种模型得到的滑坡易发性区划图对滑坡空间分布的反映与预测较为相似,曲线下方的面积都很接近,但综合考量成功率与预测率来看,EBF模型的评价结果要略优于FR模型、CF模型。
[Abstract]:As a typical area of intensive development of landslides in the Linxia basin of Longxi region of the Loess Plateau, the Basie River Basin has a wide distribution of landslides and frequent activities. It threatens the safety of local people's life and property. In order to effectively formulate the macro-control policy of regional landslide disaster, it is necessary to regionalize the vulnerability of landslide disaster. The application of GIS has greatly improved the work efficiency of landslide vulnerability evaluation. Based on remote sensing interpretation and field investigation, the location, quantity, distribution and scale of landslide in Basei River Basin have been found out. The types and distribution characteristics of landslide in the basin are summarized. Through the integration of multi-source data such as remote sensing, topography and geology, the extraction of landslide influencing factors is realized, and the slope unit is selected as the evaluation unit. The relationship between landslide and its influencing factors was analyzed quantitatively. 70% samples were randomly selected from 249 landslides in the whole area to construct three evaluation models of EBF, frequency ratio and deterministic coefficient. The remaining 30% landslide points are used to verify the model and draw the landslide susceptibility zoning map. At the same time, the accuracy of the evaluation results is verified by using the success rate curve and the prediction rate curve. The main results obtained are as follows: the scale of landslide in the basin is large and medium, the thickness is medium and deep, and the distribution is linear along the river valley; The landslide on both sides of the river develops asymmetrically, and large landslide is developed at the gully of the river. In the middle and lower reaches of loess, there are large and deep landslides. At the same time, it showed the characteristics of strong resurrection in the same place. Landslide has multi-period character in time. The landslide distribution formed in the early stage of landslide reconstruction is closely related to landform and landform. The elevation is 2000 ~ 2200mand the slope is 15 掳~ 30 掳. The landslide is especially developed in the range of 100 ~ 200m of fluctuation, 50 ~ 100m of cutting depth and 1 ~ 2.5km / km ~ 2 of valley density. Landslide has a good relationship with stratigraphic lithology, vegetation, human activities and so on, among which the lithology is Ma Lan loess and mudstone. NDVI is within the range of 0.2m and 600m away from the road.) the susceptibility of landslide in this area is divided into five grades: very low, low, moderate and high. The area under the success rate curve of CF / FR model is 0.8038 / 0.7924 / 0.8088, respectively. The area under the forecast rate curve is 0.8056U 0.7922g 0.79899.It can be seen. The spatial distribution of landslide obtained from the three models is similar to that of prediction, and the area below the curve is very similar, but considering the success rate and prediction rate. The evaluation results of EBF model are slightly better than that of FR model / CF model.
【学位授予单位】:兰州大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:P642.22
【参考文献】
相关期刊论文 前10条
1 袁湘秦;赵法锁;陈新建;程晓辉;姚翔龙;;陕西省绥德县地质灾害易发性区划[J];灾害学;2017年01期
2 安凯强;牛瑞卿;;信息量支持下SVM模型滑坡灾害易发性评价[J];长江科学院院报;2016年08期
3 武雪玲;沈少青;牛瑞卿;;GIS支持下应用PSO-SVM模型预测滑坡易发性[J];武汉大学学报(信息科学版);2016年05期
4 薛强;张茂省;李林;;基于斜坡单元与信息量法结合的宝塔区黄土滑坡易发性评价[J];地质通报;2015年11期
5 唐川;马国超;;基于地貌单元的小区域地质灾害易发性分区方法研究[J];地理科学;2015年01期
6 王佳佳;殷坤龙;肖莉丽;;基于GIS和信息量的滑坡灾害易发性评价——以三峡库区万州区为例[J];岩石力学与工程学报;2014年04期
7 杨岩岩;刘连友;;无定河流域沟谷密度特征及其影响因素分析[J];干旱区资源与环境;2014年03期
8 武雪玲;任福;牛瑞卿;彭令;;斜坡单元支持下的滑坡易发性评价支持向量机模型[J];武汉大学学报(信息科学版);2013年12期
9 王佳佳;殷坤龙;杜娟;王轶力;;基于GIS考虑准动态湿度指数的滑坡危险性预测水文 力学耦合模型研究[J];岩石力学与工程学报;2013年S2期
10 张帆宇;刘高;谌文武;沈云霞;韩文峰;;基于多变量统计分析的大型滑坡敏感性评价:以汶川地震影响的陇南地区为例[J];中南大学学报(自然科学版);2012年09期
相关博士学位论文 前2条
1 刘长春;三峡库区万州城区滑坡灾害风险评价[D];中国地质大学;2014年
2 邱海军;区域滑坡崩塌地质灾害特征分析及其易发性和危险性评价研究[D];西北大学;2012年
相关硕士学位论文 前1条
1 颜阁;华池县滑坡易发性制图[D];兰州大学;2016年
,本文编号:1484851
本文链接:https://www.wllwen.com/guanlilunwen/gongchengguanli/1484851.html