当前位置:主页 > 管理论文 > 工程管理论文 >

一种新型热驱动液体泵的结构优化及实验研究

发布时间:2018-02-26 14:39

  本文关键词: 液体输送 泵 热驱动 数值计算 出处:《浙江大学》2016年硕士论文 论文类型:学位论文


【摘要】:热驱动制冷系统中,传统的纯电驱动泵耗电量高,适应性不好;而后出现的利用阀切换来控制液体从低压侧输送到高压侧的方式又不够方便可靠。本文回顾了通过热量输入驱动流体输送的研究进展及其在制冷系统中的应用现状,在一种利用高压蒸汽驱动的液体输送泵基础上,对其结构设计进行了优化,对样机进行了加工制造,利用数值计算方法对其流量特性和输送过程特点进行了分析,并搭建了实验平台对其输送性能进行了实验研究。主要研究及结论有:1)与低温热驱动有机朗肯循环发电带动传统电泵的液体输送能力相对比,流量输送能力处于同一水平,明确了新型泵的可行性。2)数值计算结果显示,圆形和扇形结构流量随转速增加先上升后下降,最大流量对应转速分别为85r/min、180r/min,且上升段前段呈近似线性变化,处于满载输送状态;在最大流量对应转速附近有一段平稳段,说明了新型泵具有较好的平稳工作特性;。3)扇形结构相对于圆形结构,流量范围更广,相应的压力平衡孔性能更好,聚四氟乙烯、玻璃纤维、碳纤维和石墨的复合材料用来加工转子,可以达到自密封、抗磨损、摩擦系数小的综合性能要求。4)不同高压压力下,扇形结构流量随转速增加都呈现出先上升后下降的变化特点,且在上升段前段呈近似线性变化,处于满载输送状态,与数值计算相符,且随着高压压力上升,最大流量变小且最大流量对应转速变小;5)不同高压压力下,辅助电机输入功率随转速增加而增大,增大速率与高压压力成正相关;随着高压压力上升,输送性能系数上升,且在满载输送状态结束,转子通道内液体质量开始减小时,达到输送性能系数的最优值,扇形结构新型泵更适合在高压侧压力更高的低转速区间工作。
[Abstract]:In the heat driven refrigeration system, the traditional pure electric drive pump has high power consumption and poor adaptability. However, the subsequent use of valve switching to control the flow of liquid from the low-pressure side to the high-pressure side is not convenient and reliable. This paper reviews the research progress of fluid transportation driven by heat input and its application in the refrigeration system. On the basis of a liquid conveying pump driven by high pressure steam, the structure design of the pump is optimized, the prototype is processed and manufactured, and the characteristics of the flow rate and the conveying process are analyzed by using the numerical calculation method. An experimental platform was set up to study its transport performance. The main research and conclusions are as follows: (1) compared with the liquid transport capacity of low temperature heat driven organic Rankine cycle power generation and traditional electric pump, the flow transport capacity is at the same level. The results of numerical calculation show that the flow rate of circular and sector structure increases first and then decreases with the increase of rotational speed, and the corresponding maximum flow rate is 85r / min ~ 180r / min, respectively, and the front section of the rising section is approximately linear, and it is in the state of full load transportation. There is a stationary section near the corresponding speed of the maximum flow rate, which shows that the new pump has better stationary operating characteristics than the circular structure, the flow range is wider, the corresponding pressure balance hole has better performance, and the PTFE, Composite materials of fiberglass, carbon fiber and graphite are used to process rotors to meet the comprehensive performance requirements of self-sealing, wear resistance, and low friction coefficient. The flow rate of the sector structure increases first and then decreases with the increase of rotational speed, and it is approximately linear at the front of the rising section, and is in the state of full load transportation, which is consistent with the numerical calculation, and increases with the pressure of high pressure. Under different high pressure pressure, the input power of auxiliary motor increases with the increase of speed, and the increasing rate is positively related to the high pressure, and the transport performance coefficient increases with the increase of high pressure. At the end of the full load transportation the liquid mass in the rotor channel begins to decrease to the optimum value of the conveying performance coefficient. The new type of fan structure pump is more suitable for working in the low speed range with higher pressure on the high pressure side.
【学位授予单位】:浙江大学
【学位级别】:硕士
【学位授予年份】:2016
【分类号】:TB657

【相似文献】

相关期刊论文 前2条

1 杨素香;李雨;郑文鹏;严亮;;扇形结构有限转角无刷直流电动机及驱动[J];微特电机;2009年10期

2 ;[J];;年期

相关会议论文 前1条

1 郭冬杰;雷久侯;;太阳风扇形结构影响热层大气密度研究[A];中国空间科学学会空间物理学专业委员会第十五届全国日地空间物理学研讨会摘要集[C];2013年

相关硕士学位论文 前1条

1 谢令;一种新型热驱动液体泵的结构优化及实验研究[D];浙江大学;2016年



本文编号:1538435

资料下载
论文发表

本文链接:https://www.wllwen.com/guanlilunwen/gongchengguanli/1538435.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户b2b2a***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com