长城钻探公司智能决策支持系统设计与实现
发布时间:2018-06-21 02:26
本文选题:数据挖掘 + 客户分类 ; 参考:《大连理工大学》2013年硕士论文
【摘要】:在信息时代,随着计算机技术与互联网技术的迅猛发展,企业的经营方式发生了质的变化。企业竞争已由靠规模价格取胜,转变为靠满足顾客的多样化个性化需求及快速反应制胜,高效率已经成为企业竞争力的主要特征。企业必须在这种竞争环境下,探索新的竞争手段,提高自身的市场竞争能力。 本文围绕长城钻探公司的智能决策支持系统进行设计,实现了客户管理、销售管理、采购管理、库存管理、生产管理等模块。在决策部分根据企业客户特征和背景,分析客户价值,按照分析结果对客户进行细分,设定相应的客户级别,从而指导长城钻探有限公司将有限的服务资源进行更有效的分配,以期望最少的投入获得更大的回报。本文重点研究了基于数据挖掘的客户分类决策模块,通过准确的定位目标客户,满足客户的个性化及特殊需求,最大化的挖掘潜在购买额度高的客户,进而提高客户对企业的忠诚度和利润贡献率,从而全面提升企业的市场竞争能力、赢利能力和服务能力,提高企业整体客户关系管理水平,降低服务成本和客户流失率。本系统采用SQL Server数据库,运用C#编程语言,在.NET4.0环境下进行开发,完成了适合中小企业实际情况又具有决策支持的系统。 本文描述了从需求分析,概要设计,到详细设计,其中包含了数据库设计,再到实现与测试的开发过程。在测试阶段,通过白盒测试、黑盒测试等方法对系统进行各个方面的测试,系统的测试结果表明,本系统能满足用户需求,其整体性能也达到了系统的预期目标。
[Abstract]:In the information age, with the rapid development of computer technology and Internet technology, the business mode of enterprises has changed qualitatively. The enterprise competition has changed from relying on the scale price to meeting the customers' diversified and individualized demand and quick reaction. The high efficiency has become the main characteristic of the enterprise competitiveness. In this competitive environment, enterprises must explore new means of competition and improve their market competitiveness. In this paper, the intelligent decision support system of the Great Wall drilling Company is designed, and the modules of customer management, sales management, purchasing management, inventory management and production management are realized. In the decision-making part, the customer value is analyzed according to the customer characteristics and background of the enterprise, the customer is subdivided according to the analysis result, and the corresponding customer level is set, thus instructing the Great Wall drilling Co., Ltd to distribute the limited service resources more effectively. Get a bigger return with the least expected investment. This paper focuses on the research of customer classification decision module based on data mining, through the accurate positioning of target customers, to meet the personalized and special needs of customers, maximize the mining of potential customers with high purchase amount. Then the customer loyalty to the enterprise and the profit contribution rate are improved, thus the market competition ability, the profit ability and the service ability of the enterprise are improved, the customer relationship management level of the whole enterprise is improved, and the service cost and the customer turnover rate are reduced. Using SQL Server database and C # programming language, the system is developed in the environment of .NET4.0, which is suitable for the actual situation of small and medium-sized enterprises and has decision support system. This paper describes the development process from requirements analysis, summary design to detailed design, including database design, implementation and testing. In the testing stage, the system is tested in all aspects by the methods of white box test and black box test. The system test results show that the system can meet the needs of users, and its overall performance reaches the expected goal of the system.
【学位授予单位】:大连理工大学
【学位级别】:硕士
【学位授予年份】:2013
【分类号】:TP311.52
【参考文献】
相关期刊论文 前10条
1 魏娟,梁静国;基于数据挖掘技术的企业客户关系管理(CRM)[J];商业研究;2005年07期
2 郭风;秦惠林;;客户关系管理中数据挖掘的应用[J];商业研究;2008年09期
3 周水银,陈荣秋;基于Internet的客户关系管理研究[J];工业工程与管理;2002年02期
4 李宝东,宋瀚涛;数据挖掘在客户关系管理(CRM)中的应用[J];计算机应用研究;2002年10期
5 周丹晨,殷国富,龙红能;CRM环境下面向知识发现的数据分类技术的应用研究[J];计算机应用与软件;2004年02期
6 李延海;孙林岩;刘哲;;基于数据挖掘的海关客户关系管理系统构建[J];科技管理研究;2007年01期
7 高良敏;陈良;毕卫红;李晓梅;刘小春;罗家洪;;某县参合农民对新型农村合作医疗药品供应满意度及Logistics回归分析[J];昆明医学院学报;2009年08期
8 丁茜;;客户关系管理中数据挖掘技术的应用研究[J];辽宁师范大学学报(自然科学版);2008年02期
9 汪毅,朱顺泉;数据挖掘技术在客户关系管理中的应用研究[J];软科学;2003年02期
10 刘锡京,宣慧玉;客户关系管理与数据挖掘[J];中外管理导报;2002年10期
,本文编号:2046775
本文链接:https://www.wllwen.com/guanlilunwen/kehuguanxiguanli/2046775.html