基于Eviews的卷烟销量预测模型研究
发布时间:2018-03-29 00:04
本文选题:烟草企业 切入点:卷烟销售 出处:《中南大学》2013年硕士论文
【摘要】:摘要:近年来,随着中国加入世贸后,卷烟市场为了应对市场开放,在烟草行业全面推广和深度推进“按客户订单组织货源”工作,如何准确预测市场需求、为整个烟草行业的经营提供真实有效的参考和基础,在这一时期显得甚为重要。因此,卷烟销量预测在烟草行业内得到了高度关注并进行了广泛地实践。准确预测市场需求,不仅有利于企业决策者把握市场走向,同时也会对企业的良性运作起到积极的作用。 本文对C市烟草分公司目前需求预测机制的实际情况进行了研究,针对影响销量的因素进行分析总结,提出将这些影响因素加入到多种销量预测模型中,应用SQL Server2010软件设计了相应的数据库,通过Eviews工具等对样本数据进行预测、分析,编制相应的程序对C市的卷烟销量进行预测计算。 对预测结果的分析表明,这种销量预测方式重视分析销量数据以及影响销量的因素,在C市年度、月度销量及卷烟结构销量方面计算得到了较好的结果,对预测C市烟草分公司的销量工作起到了积极的推动作用。
[Abstract]:Abstract: in recent years, with China's accession to the WTO, the cigarette market, in order to cope with the opening up of the market, comprehensively popularizes and deepens the work of "organizing supplies according to customer orders" in the tobacco industry, and how to accurately predict the market demand. It is very important to provide the real and effective reference and foundation for the management of the whole tobacco industry during this period. Therefore, the forecast of cigarette sales has been highly concerned and widely practiced in the tobacco industry. It not only helps the decision makers to grasp the market trend, but also plays a positive role in the benign operation of enterprises. In this paper, the actual situation of current demand forecasting mechanism in C City Tobacco Branch is studied, and the factors affecting sales volume are analyzed and summarized. The corresponding database was designed by using SQL Server2010 software, and the sample data was predicted by Eviews tools. The corresponding program was compiled to predict and calculate the cigarette sales volume in C city. The analysis of the forecast results shows that this method attaches importance to the analysis of the sales data and the factors that affect the sales volume. In C city, the monthly sales volume and the cigarette structure sales are calculated with good results. It plays a positive role in predicting the sales of C City Tobacco Branch.
【学位授予单位】:中南大学
【学位级别】:硕士
【学位授予年份】:2013
【分类号】:F224;F426.8;F768
【参考文献】
相关期刊论文 前8条
1 黄国兴;李琳;李冰;陈玲;李坚斌;;人工神经网络在材料制备工业中的应用[J];材料导报;2006年11期
2 朱建良;闻彦;李国辉;;基于灰色理论与BP神经网络的电力负荷预报[J];电机与控制学报;2006年04期
3 杨国栋,王肖娟,尹向辉;人工神经网络在水环境质量评价和预测中的应用[J];干旱区资源与环境;2004年06期
4 陈冠昌;;浅谈地市级烟草公司企业文化建设的难点及探索[J];广西烟草;2008年04期
5 梁平;龙新峰;吴庚申;;基于ARMA及神经网络的汽轮机振动故障诊断研究[J];热能动力工程;2007年01期
6 刘国林;高放;李俊芬;;最优组合预测及其在短时交通流预测中的应用[J];山东科技大学学报(自然科学版);2009年01期
7 刘柏;赵振全;;基于STAR模型的中国实际汇率非线性态势预测[J];数量经济技术经济研究;2008年06期
8 李俊山;刘俊生;;提高企业核心竞争力的重要途径[J];沈阳农业大学学报(社会科学版);2008年01期
,本文编号:1678644
本文链接:https://www.wllwen.com/guanlilunwen/shengchanguanlilunwen/1678644.html