基于最小二乘支持向量机的北京市肉类需求量预测研究
[Abstract]:As a large city with a permanent population of 19.21 million, Beijing has a huge demand for meat every year. In 2010, the demand for meat in Beijing was 547086 tons, including 388542 tons for pigs, 88080 tons for beef and 70464 tons for beef and mutton. As an indispensable food in people's daily life, meat and its products play an important role in protecting people's livelihood. In order to ensure the supply of meat and its products and reduce the waste of resources, it is necessary to forecast the demand of meat and its products effectively. In this paper, the selection of forecasting model of meat demand and the determination of key influencing factors are studied, and the forecast model is used to predict the demand of meat in Beijing. The main contents are as follows: first of all, the common demand forecasting methods at home and abroad are compared. Traditional prediction methods: regression forecasting, time series prediction, and intelligent methods: artificial neural network prediction method, least squares support vector machine prediction method, are analyzed, and the advantages and disadvantages are compared. The least square support vector machine (LS-SVM) model is used to predict the meat demand in Beijing. Secondly, select the key factors that affect the meat demand in Beijing. The change trend of meat demand and the consumption structure of meat food in Beijing are analyzed, and the main forecast target is determined. All the factors affecting meat demand in Beijing are summarized. According to the correlation analysis and the availability of data, the population size, the annual cash income per person and the retail price index of meat food are selected as the key factors. Finally, the least square support vector machine (LS-SVM) model is used to predict the meat demand in Beijing. The results obtained are compared with the real values, the multivariate regression method and the BP neural network model. It is proved that this model has a high prediction accuracy. And the least square support vector machine is used to forecast the meat demand in Beijing in 2015 and 2020. The results showed that the demand for pork would increase greatly in the next ten years, and the demand for beef and mutton would decrease. The research work in this paper can provide more accurate data of meat demand for the development planning of meat food enterprises in Beijing and cold chain logistics system planning in Beijing, and further research on the selection and calculation of meat demand forecasting models. Reference and reference are provided.
【学位授予单位】:北京交通大学
【学位级别】:硕士
【学位授予年份】:2013
【分类号】:F426.82;F224
【参考文献】
相关期刊论文 前10条
1 张太原;1956—1978年北京居民家庭的食品消费生活[J];当代中国史研究;2001年03期
2 周孙锋;张文广;;西安市公交客运量的回归分析预测研究[J];广东交通职业技术学院学报;2011年04期
3 王德华;;我国城镇居民猪肉需求量的计量经济学模型[J];硅谷;2008年09期
4 陈涛;杨凯凡;杨晓;;基于支持向量机的石油需求预测[J];河南科学;2008年12期
5 岳宏;霍灵光;张越杰;;中国城乡居民牛肉需求量预测分析[J];吉林农业大学学报;2012年01期
6 林树文;刘荣章;陈志峰;;福州市肉类产品的消费需求分析及预测[J];江西农业学报;2010年10期
7 徐瑜青,张云静;西部大开发农产品流通问题研究——四川省猪肉需求计量经济模型分析[J];农村经济;2003年06期
8 李振唐,王谊鹃,彭鹰;我国肉类产品生产消费能力分析[J];农业技术经济;2005年03期
9 刘秀梅,秦富;我国城乡居民动物性食物消费研究[J];农业技术经济;2005年03期
10 王祖力;王济民;;我国畜产品消费变动特征与未来需求预测[J];农业展望;2011年08期
相关会议论文 前1条
1 黄元生;郑燕;乞建勋;;基于最小二乘的支持向量机在电力需求预测中的应用[A];中国优选法统筹法与经济数学研究会第七届全国会员代表大会暨第七届中国管理科学学术年会论文集[C];2005年
相关博士学位论文 前2条
1 杨奎河;短期电力负荷的智能化预测方法研究[D];西安电子科技大学;2004年
2 包哲静;支持向量机在智能建模和模型预测控制中的应用[D];浙江大学;2007年
相关硕士学位论文 前4条
1 刘丹;天然气消费需求量预测方法改进研究[D];重庆大学;2006年
2 杨立成;基于最小二乘支持向量机的短期电力负荷预测方法研究[D];广西大学;2008年
3 朱杰;基于最小二乘支持向量机的传染病预测与研究[D];苏州大学;2009年
4 冷北雪;基于支持向量机的电力系统短期负荷预测[D];西南交通大学;2010年
,本文编号:2302787
本文链接:https://www.wllwen.com/guanlilunwen/shengchanguanlilunwen/2302787.html