基于图像语义的用户兴趣建模
本文关键词:基于图像语义的用户兴趣建模 出处:《数据分析与知识发现》2017年04期 论文类型:期刊论文
更多相关文章: 图像语义 用户兴趣建模 社交网络 支持向量机
【摘要】:【目的】社交网络环境下的用户兴趣建模是好友推荐、精准营销的关键,利用微博用户分享的图像,提出一种基于图像语义的用户兴趣建模方法,旨在更加准确地预测用户的真实兴趣。【方法】在获取新浪微博用户图像数据的基础上,使用图像的高层语义表达用户兴趣特征,基于这些特征使用SVM训练得到图像语义分类器进行预测。【结果】实验结果表明,本文建立的模型能够较为准确地预测用户真实兴趣,169位用户分类的准确率达到97.38%,召回率为98.92%,F值为98.14%。【局限】由于实验图像数据集有限,未能完整地覆盖用户所有的兴趣类别。【结论】该模型能够基于用户分享的图像较为准确地预测用户兴趣,表明了图像高层语义的有效性,同时为图像高层语义应用研究提供了一定的理论和技术基础。
[Abstract]:......
【作者单位】: 武汉大学信息管理学院;武汉传媒学院文化管理学院;武汉大学信息检索与知识挖掘研究所;
【基金】:国家自然科学基金面上项目“面向词汇功能的学术文本语义识别与知识图谱构建”(项目编号:71473183)的研究成果之一
【分类号】:G254
【正文快照】: 1引言 随着网络带宽和多媒体技术的迅猛发展,用户获取信息资源的方式日益多元化,不同的用户由于知识背景、兴趣爱好等方面的差异,需要的信息资源往往是不同的。在这种网络环境下,为了更好地解决个性化用户兴趣需求,建立更为准确的用户兴趣模型,各种用户兴趣数据采集方法应运
【相似文献】
相关期刊论文 前10条
1 王杰;使图像的编辑更加容易[J];中文信息;1998年Z1期
2 王波,姚敏;基于信息抽取的匿名用户兴趣描述[J];华南理工大学学报(自然科学版);2004年S1期
3 董全德;;用户兴趣迁移模式与个性化服务[J];电脑知识与技术(学术交流);2007年17期
4 郑运刚;马建国;;基于分类的用户兴趣漂移模型[J];情报杂志;2008年01期
5 张涛;;基于浏览历史的用户兴趣提取模型[J];软件导刊;2009年06期
6 杨杰;陈恩红;;面向个性化服务的用户兴趣偏移检测及处理方法[J];电子技术;2009年11期
7 陈圣兵;李龙澍;纪霞;;多层次用户兴趣模式的动态捕捉[J];计算机工程与应用;2009年36期
8 郑晓健;庞淑英;何英;;一种面向主题的用户兴趣挖掘模型研究[J];昆明学院学报;2010年03期
9 花青松;刘海峰;胡铮;;基于基尼系数的用户兴趣分布模式度量方法[J];计算机工程;2012年22期
10 孙雨生;刘伟;仇蓉蓉;黄传慧;;国内用户兴趣建模研究进展[J];情报杂志;2013年05期
相关会议论文 前7条
1 赵琦;骆志刚;田文颖;李聪;丁凡;;一种基于负反馈信息的用户兴趣模型修正方法[A];中国通信学会第六届学术年会论文集(下)[C];2009年
2 孙静;郭奇;张志强;冯建华;;一种基于面向领域检索系统的用户兴趣获取方法[A];第二十一届中国数据库学术会议论文集(技术报告篇)[C];2004年
3 孙铁利;教巍巍;;基于马尔科夫模型的用户兴趣导航模型系统(英文)[A];计算机技术与应用进展——全国第17届计算机科学与技术应用(CACIS)学术会议论文集(上册)[C];2006年
4 廖祝华;刘建勋;易爱平;;基于用户兴趣的Web服务发现[A];2006年全国开放式分布与并行计算机学术会议论文集(三)[C];2006年
5 李晓黎;史忠植;梁永全;刘福桃;;INTERNET网上一种识别用户兴趣的学习方法[A];第十六届全国数据库学术会议论文集[C];1999年
6 田萱;杜小勇;;基于SAM模型的用户兴趣表示研究[A];第二十三届中国数据库学术会议论文集(技术报告篇)[C];2006年
7 王勇;刘奕群;张敏;马少平;茹立云;;基于用户兴趣分析的网页生命周期建模(英文)[A];第三届全国信息检索与内容安全学术会议论文集[C];2007年
相关重要报纸文章 前1条
1 中国科学院计算技术研究所 王 斌;内容为王[N];计算机世界;2004年
相关博士学位论文 前9条
1 梁政;面向在线社交网络舆情的信息传播分析关键技术研究[D];国防科学技术大学;2014年
2 张召;在线论坛用户兴趣图谱发现与个性化信息推荐[D];华东师范大学;2012年
3 刘淇;基于用户兴趣建模的推荐方法及应用研究[D];中国科学技术大学;2013年
4 郭岩;网络日志中用户兴趣的挖掘及利用[D];中国科学院研究生院(计算技术研究所);2004年
5 吴丽辉;个性化的Web信息采集技术研究[D];中国科学院研究生院(计算技术研究所);2005年
6 谢兴;社会网络中兴趣发现与信息组织的研究[D];复旦大学;2011年
7 李东胜;基于兴趣与保护隐私的在线社区推荐技术研究[D];复旦大学;2012年
8 陈浩;Web搜索的用户兴趣与智能优化研究[D];中南大学;2012年
9 姜邵巍;基于竞争关系的推荐技术研究[D];北京邮电大学;2014年
相关硕士学位论文 前10条
1 陈媛媛;用户兴趣图谱演化机制研究[D];武汉理工大学;2014年
2 梁润庭(Runting Leung);面向微博用户的兴趣识别算法的研究与实现[D];西南交通大学;2015年
3 俞忻峰;新浪微博的数据采集和推荐方案研究[D];南京理工大学;2015年
4 杨梅;基于树型网络的多源用户兴趣数据融合方法研究[D];四川师范大学;2015年
5 石光莲;基于形式概念分析的Folksonomy用户兴趣识别研究[D];西南大学;2015年
6 汤文清;微博用户的兴趣及性格分析[D];上海大学;2015年
7 梅佩;基于浏览内容的用户兴趣研究[D];北京化工大学;2015年
8 张少杰;基于用户兴趣的微博广告投放系统的设计与实现[D];山西大学;2015年
9 黄龙伟;基于蚁群算法的WEB日志用户兴趣路径研究[D];江西师范大学;2015年
10 方正;微博短文本分析技术研究及应用[D];电子科技大学;2014年
,本文编号:1348098
本文链接:https://www.wllwen.com/guanlilunwen/yingxiaoguanlilunwen/1348098.html