基于大数据技术的电信客户维系挽的分析与研究
发布时间:2018-01-09 08:07
本文关键词:基于大数据技术的电信客户维系挽的分析与研究 出处:《郑州大学》2017年硕士论文 论文类型:学位论文
【摘要】:进入21世纪,伴随着电信市场的不断开放,中国的电信市场取得了迅猛的发展,电信企业之间的竞争也日益加剧。为了争夺客户增加自身利润,电信企业采取各种营销手段推广新业务和新套餐,但是,这又导致了运营成本的上升,增加了客户的不稳定性。客户的流失已逐步成为了影响电信企业效益的主要原因,同时在多方面严重危及着电信企业的健康发展,客户的维系挽留已经成为电信企业的重中之重。面对客户对电信企业服务满意度低和投诉率高的情况,弄清客户投诉的根本原因和真正诉求,从事前防备和事中管控去避免和降低投诉,从而减少客户离网现象的发生是很有必要的。本文主要针对电信企业客户流失现象频发的企业现状,以国内主流社交媒体为主要研究对象,进行网络爬虫策略的研究与实现。通过获取新浪微博上用户发布的大量数据,基于大数据技术对数据进行处理和分析,最后对电信客户维系挽留提出可行性对策与建议。本文的主要研究工作与内容如下:1.对网络爬虫技术和大数据技术进行了学习与分析,基于Python语言在Linux平台上以国内主流社交媒体新浪微博为研究对象,进行网络爬虫策略的研究与实现,爬取新浪微博用户发布的大量数据。2.为了进行数据的分析与研究,弄清客户的真正诉求与投诉的根本原因,本文搭建了一套HADOOP分布式系统测试环境,存储网络爬虫爬取的相关数据。另外,搭建和部署并行运算框架Spark,依托大数据技术对网络爬虫爬取的数据进行处理,方便下一步研究与分析。3.将Spark平台处理分析的数据存入MONGODB中的Python Matplotlib绘图库对数据进行了多维度的可视化图表分析,并依据分析结果针对电信企业客户的维系挽留在多个领域有针对性的提出了可行性对策与建议。本文主要基于大数据技术和网络爬虫策略对电信客户的维系挽留进行分析与研究,然后提出有针对性的改进对策,并在文章最后给出了本文研究内容的新的技术展望。
[Abstract]:In 21th century, with the continuous opening of the telecommunications market, China's telecommunications market has made rapid development, the competition between telecom enterprises is also increasingly intensified. In order to compete for customers to increase their own profits. Telecom companies adopt various marketing methods to promote new business and new packages, but this leads to the rise of operating costs. Increasing the instability of customers. The loss of customers has gradually become the main reason of affecting the efficiency of telecom enterprises, and seriously endangers the healthy development of telecom enterprises in many aspects. Customer retention has become the most important part of telecom enterprises. In the face of low customer satisfaction and high complaint rate, we can find out the root cause and real demand of customer complaints. It is necessary to avoid and reduce the complaints before taking precautions and controlling in the incident, so as to reduce the occurrence of the phenomenon of customer disconnection. This paper mainly aims at the current situation of the enterprises where the phenomenon of frequent customer churn occurs in telecom enterprises. Take the mainstream social media as the main research object, carry on the research and implementation of the web crawler strategy. Through obtaining a large number of data released by users on Sina Weibo, processing and analysis of the data based on big data technology. Finally, the paper puts forward the feasible countermeasures and suggestions for the telecom customer retention. The main research work and content of this paper are as follows: 1. Learn and analyze the network crawler technology and big data technology. Based on the Python language on the Linux platform, taking the domestic mainstream social media Sina Weibo as the research object, the research and implementation of the web crawler strategy are carried out. Crawl to Sina Weibo user released a large number of data. 2. In order to carry out data analysis and research, to understand the customer's real demands and complaints of the root cause. In this paper, we build a HADOOP distributed system test environment to store the crawler crawling data. In addition, build and deploy the parallel computing framework Spark. Based on big data technology, the data of crawler crawling are processed. Convenient for the next research and analysis .3.The Spark platform processing and analysis of data stored in the MONGODB Python. The Matplotlib drawing library carries on the multi-dimensional visualization chart analysis to the data. Based on the results of the analysis, this paper puts forward some feasible countermeasures and suggestions for the maintenance and retention of telecom customers in many fields. This paper mainly based on big data technology and network crawler strategy to retain telecom customers. Analysis and research. At last, the paper gives a new technical prospect of the research content.
【学位授予单位】:郑州大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:F626;F274;TP311.13
【参考文献】
相关期刊论文 前8条
1 詹义;方媛;;基于Spark技术的网络大数据分析平台搭建与应用[J];互联网天地;2016年02期
2 陈湘涛;张超;韩茜;;基于Hadoop的并行共享决策树挖掘算法研究[J];计算机科学;2013年11期
3 刘师语;周渊平;杜江;;基于HADOOP分布式系统的数据处理分析[J];通信技术;2013年09期
4 蒋建洪;;主要分布式搜索引擎技术的研究[J];科学技术与工程;2007年10期
5 严浩仁;服务质量对移动电话顾客满意度影响的实证研究[J];移动通信;2004年Z1期
6 龚益鸣,刘来发;确定电信顾客满意度及其关键因素的模型和方法[J];中国质量;2004年01期
7 胥学跃,傅德月,王惠敏;电信客户投诉的营销策略[J];通信与信息技术;2003年01期
8 王永贵;服务质量、顾客满意与顾客价值的关系剖析——基于电信产业的整合框架[J];武汉理工大学学报(社会科学版);2002年06期
,本文编号:1400613
本文链接:https://www.wllwen.com/guanlilunwen/yingxiaoguanlilunwen/1400613.html