基于拟态物理学算法和粗糙集理论的配电网故障区段定位
发布时间:2018-05-16 08:12
本文选题:配电网 + 故障定位 ; 参考:《湖南工业大学》2015年硕士论文
【摘要】:配电网故障定位是配电网研究的重点之一,其准确性、定位速度关乎着人民的生产生活,也是供电企业最为看重的指标之一。本文根据配电网现有的自动化程度,将其划分为配电自动化改造完全的网络和配电自动化改造未完全的网络,并针对这两种配电网络的主要故障信息来源的不同分别深入研究,采取合适的方法来完成配电网的故障定位。对于自动化改造完全的配电网络,考虑到在分段开关处装设有配电终端设备(FTU、RTU),能实时采集传输电量信息,本文采用了一种新的智能算法——拟态物理学算法来对其进行故障定位研究。由于配电网发生故障后通过分段开关的电流会产生较大变化,且可以通过终端设备进行实时检测,因此本文采用提取上述电流信息的策略,将配电网的故障定位抽象成为一个二进制寻优的过程;利用混沌映射和反向初始化改进拟态物理学算法,并运用改进后算法对配电网进行故障定位。从仿真的结果可知,改进的拟态物理学算法在寻优能力以及收敛精度等方面都得到了一定的改善,将其运用到配电网的故障定位上,具有较好的容错性和准确性。对于自动化改造程度不高的配电网络,考虑到分段开关处部分装设有重合闸动作告警信息和故障指示器信息,同时故障后营销95598系统会接受到停电用户的报修电话,因此本文对如何融合多源信息进行配电网故障定位展开研究。主要采用粗糙集理论融合报修信息以及开关告警信息形成决策表,并对其约简冗余以减小存储空间,最终实现配电网故障的快速定位。此外,针对定位至台区后营销系统装设有智能电表的情况,采取召测智能电表电压的方案,对台区的故障进一步地精细化定位。仿真案例表明,提出的的故障定位方案能扫除现有自动化程度不高的配电网的故障定位信息盲区,提高定位准确率,且智能电表的召测能进一步将故障区段精确到楼栋甚至用户。最后,本文采用MATLAB/GUI设计了一款模拟故障定位软件,旨在利用和集成上述定位方案,为相关人员熟悉故障诊断提供更好的借鉴。
[Abstract]:Distribution network fault location is one of the key points in distribution network research. Its accuracy and location speed are related to the production and life of the people, and it is also one of the most important indicators of power supply enterprises. According to the existing automation degree of distribution network, this paper divides the distribution network into complete network of distribution automation transformation and incomplete network of distribution automation transformation, and studies the difference of main fault information sources of these two kinds of distribution network in depth. Adopt appropriate method to complete fault location of distribution network. For the automatic transformation of the complete distribution network, considering that the distribution terminal equipment is installed at the segmented switch, the FTU / RTUU can collect and transmit the electric quantity information in real time. In this paper, a new intelligent algorithm, pseudo physics algorithm, is used to study the fault location. Because the current through the segment switch will change greatly after the fault of the distribution network, and can be detected in real time by the terminal equipment, the strategy of extracting the above current information is adopted in this paper. The fault location of distribution network is abstracted as a binary optimization process, and the improved pseudo-physical algorithm is improved by chaotic mapping and reverse initialization, and the fault location of distribution network is carried out by using the improved algorithm. From the simulation results, we can see that the improved pseudo-physical algorithm has been improved in the aspects of optimization ability and convergence accuracy, and its application to fault location of distribution network has good fault tolerance and accuracy. For the distribution network with low degree of automation, considering that there are reclosure action alarm information and fault indicator information in the section switch, after the failure, the marketing 95598 system will receive the repair telephone from the blackout user. Therefore, how to fuse multi-source information for fault location of distribution network is studied in this paper. The rough set theory is used to combine the repair information and the switch alarm information to form the decision table, and to reduce the redundancy to reduce the storage space, and finally to realize the fast location of the distribution network fault. In addition, in view of the situation that intelligent ammeter is installed in the marketing system after locating to the station area, the scheme of calling intelligent meter voltage is adopted to further refine the fault location of the station area. Simulation cases show that the proposed fault location scheme can eliminate the blind area of fault location information in distribution network with low degree of automation, and improve the accuracy of location. And intelligent meter call can further accurate fault section to buildings and even users. Finally, this paper designs a simulated fault location software using MATLAB/GUI, which aims to use and integrate the above positioning scheme, and provide a better reference for the related personnel familiar with fault diagnosis.
【学位授予单位】:湖南工业大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:TM727
【参考文献】
相关期刊论文 前10条
1 付家才;陆青松;;基于蝙蝠算法的配电网故障区间定位[J];电力系统保护与控制;2015年16期
2 苏译;彭敏放;朱亮;车红卫;冷华;吴芳榕;;基于嵌套膜算法的大规模配电网故障定位[J];传感器与微系统;2015年05期
3 刘朝华;李小花;张红强;周少武;;基于并行动态学习型免疫算法的永磁同步电机状态监测[J];自动化学报;2015年07期
4 刘科研;盛万兴;张东霞;贾东梨;胡丽娟;何开元;;智能配电网大数据应用需求和场景分析研究[J];中国电机工程学报;2015年02期
5 苏译;彭敏放;朱亮;车红卫;刘正谊;;基于信息还原与膜计算的配电网故障定位[J];仪器仪表学报;2014年12期
6 黄佳乐;杨冠鲁;;配电网故障区间定位的改进矩阵算法[J];电力系统保护与控制;2014年11期
7 舒剑;;基于扩展混沌映射的认证密钥协商协议[J];物理学报;2014年05期
8 詹昕;向铁元;陈红坤;余扬波;;基于搜索矢量拟态物理学算法的微电网脆弱性评估及重构[J];电工技术学报;2014年02期
9 丁明;王伟胜;王秀丽;宋云亭;陈得治;孙鸣;;大规模光伏发电对电力系统影响综述[J];中国电机工程学报;2014年01期
10 郑涛;潘玉美;郭昆亚;王增平;孙洁;;基于免疫算法的配电网故障定位方法研究[J];电力系统保护与控制;2014年01期
,本文编号:1896113
本文链接:https://www.wllwen.com/guanlilunwen/yingxiaoguanlilunwen/1896113.html