股票收益率的统计分析及其股价预测
发布时间:2020-03-21 23:11
【摘要】: 1973年Fischer Black和Myron Scholes建立了看涨期权公式(称为Black- Scholes公式) V = S_t N( d_1 )-Ke~(-r(T-t))(d_2).它基于以下的基本假设: (1)原生资产价格服从几何布朗运动(2)无风险利率r是常数.(3)原生资产不支付股息.(4)不支付交易费和税收.(5)不存在套利机会.自从著名的Black- Scholes公式发表以后,金融理论方面得到了飞跃发展.然而大多研究者通过对股市的研究发现股票价格并不服从几何布朗运动,即对数收益率不服从正态分布,如文献[6][7]通过对实测数据的分析,说明布朗运动与市场实际相距甚远.因此人们一直关注比较准确描绘股票价格运动的期权定价问题.由此可见对股票价格运动的研究具有重大的意义.本文并不直接研究期权定价问题,而是研究股票的对数收益率问题和股价预测问题,为投资者提供投资策略,也为今后研究期权定价做点工作. 对收益率的研究必须研究收益率的分布规律和特征.由于核估计具有良好的性质:逐点渐近无偏性和一致渐近无偏性;均方相合性;强相合性.因此本文在第一章研究在不知收益率分布的情况下采用非参统计方法去估计收益率的分布和投资策略.除此之外,由于投资者还希望知道股价已涨到或跌到了某个价位时,下一步它涨到或跌到另一个价位的概率有多大.因此本文在第二章对此问题进行研究,引入周收益率和周最大收益率,用马尔可夫过程理论对上升阶段、下跌阶段与整理阶段的股票价格走势和投资策略进行全面研究分析.由于好的预测能为投资者做出好的策略,因此本文在第三章研究预测问题.ARIMA模型是基于大样本做预测分析的一个较好的模型,但多数文章只是应用这个模型,而没有处理当样本数据发生较大变化时,预测会出现大的偏差问题.本文并不用日收盘价数据对日收盘价的预测,而是用60分钟线的数据对日收盘价的预测,结果表明当日收盘价发生大波动时,预测到的日收盘价比用日收盘价数据对日收盘价的预测效果好.利用马尔可夫过程对随机现象做预测,这是一个比较好的预测方法.许多文章主要是利用一步转移概率矩阵、n步转移概率矩阵和遍历性来做预测工作,本文假设对数收益率rn服从马尔可夫过程,然后推导出股票价格S_n的最优预测. GM(1,1)模型是基于小样本做预测的模型,对于具有指数变化规律的数据做预测效果显著.由于
【学位授予单位】:广西师范大学
【学位级别】:硕士
【学位授予年份】:2006
【分类号】:F830.91;F224
本文编号:2594073
【学位授予单位】:广西师范大学
【学位级别】:硕士
【学位授予年份】:2006
【分类号】:F830.91;F224
【引证文献】
相关硕士学位论文 前1条
1 夏云亭;基于融券和认购权证的套利投资组合研究[D];浙江大学;2011年
,本文编号:2594073
本文链接:https://www.wllwen.com/guanlilunwen/zhqtouz/2594073.html
最近更新
教材专著