姜黄素和有氧运动诱导的AMPK激活对中老年大鼠骨骼肌细胞自噬的影响初探
[Abstract]:Objective: to study the changes of AMPK activity in soleus muscle and the expression of autophagy related genes in soleus muscle after exercise and curcumin intervention by establishing 8 weeks constant load aerobic exercise and curcumin intervention model of middle-aged and aged rats. HE staining was used to observe the histopathological changes of skeletal muscle in rats and to explore the effect of exercise combined with curcumin on the autophagy of skeletal muscle cells induced by curcumin. The mechanism of exercise and curcumin in preventing Sarcopenia was speculated. Methods: 40 healthy male SD rats of 21 months old were raised in cage. After three days of adaptive feeding, they were randomly divided into four groups: blank control group (BC,n=10), quiet curcumin group (QC,n=10), constant load exercise group (EC,n=10) and constant load exercise group (NE,n=10). Each group was fed with 2 cages, 5 in each cage. In the exercise group, the animal model of curcumin combined with aerobic exercise intervention was established, in which the slope was 0, the speed of 15m/min 脳 60min (load intensity was equal to 70%VO2max), and the dose of curcumin was the weight of 100mg/kg mice, which was continuously trained for 5 days per week. A total of 8 weeks of training. 20 hours after the last training, the soleus muscle of the hind limb of the rats was removed completely, and the relative weight of the soleus muscle was calculated. The AMPK activity of the soleus muscle was detected by Elisa method. The expression of AGT7 m RNA,LC3-b mRNA,LAMP-2mRNA was detected by real-time fluorescence quantitative PCR. The histopathological changes of rat skeletal muscle were observed by HE staining. The results showed that the weight of rats in each group was significantly decreased (p0.01), and the weight of ec rats in QC group was significantly higher than that in qc group (p0.01) and ec group (p0.05) .2) compared with bc group, the si values of QC group and ec group were significantly higher than those of bc group (p0.01) and ec group (p0.05), and compared with bc group, the si values of QC group and ec group were significantly higher than those of control group (p0.01). There were significant differences (p0.01) in the soleus muscle between the two groups (p0.01) and the histopathological changes related to aging in the soleus muscle of the middle-aged and aged rats were higher than those in the ec group (p0.05). Compared with the bc group, the frequency of abnormal tissue appearance in the ne group was lower than that in the bc group (P 0.01), and the activity of ampk in the bc group was significantly higher than that in the bc group (p0.01), and the ampk activity of the flounder muscle in the ne group was the highest, which was higher than that in the ne group (P < 0.01), and the activity of ampk in the flounder muscle was the highest in the ne group compared with the bc group (P < 0.05). There was significant difference (p0.05) between the two groups (p0.05). Compared with the control group, the expression of agt7mrna in the ne group and the ec group was significantly higher than that in the bc group (p0.05) and the agt7mrna expression level in the bc group was significantly higher than that in the bc group (p0.05), compared with the ec group, the agt7mrna expression level in the ec group was significantly higher than that in the control group (p0.01). Compared with the bc group, the agt7mrna expression level in the ne group and the ec group was significantly higher than that in the control group (p0.05). The expression of lc3-bmrna was significantly higher in the lc3-bmrna group than in the qc group and the ne group (p0.01). The expression of lamp-2mrna in the ec group was significantly higher than that in the bc group (p0.01), and the expression of lamp-2mrna in the ec group was higher than that in the qc group and ne group (p0.05). The expression of lamp-2mrna in the ec group was significantly higher than that in the qc group (p0.05). Conclusion: 8 weeks of constant load aerobic exercise, curcumin and combined intervention of curcumin and both can maintain skeletal muscle weight to a certain extent and improve the pathological changes of skeletal muscle tissue. The mechanism may be to increase the expression of AGT7,LC3-b,LAMP-2 gene in skeletal muscle of middle-aged and aged rats by activating skeletal muscle AMPK,.) curcumin and constant load aerobic exercise may maintain bone by activating skeletal muscle AMPK to induce autophagy. Compared with curcumin and curcumin combined with constant load aerobic exercise, the effects of 8 weeks of constant load aerobic exercise on alleviating the loss of skeletal muscle mass and improving the pathological changes of skeletal muscle were more obvious than those of curcumin and curcumin combined with constant load aerobic exercise. This may be because constant-load aerobic exercise keeps skeletal muscles at a more adaptive autophagy level.
【学位授予单位】:湖南师范大学
【学位级别】:硕士
【学位授予年份】:2016
【分类号】:G804.2
【相似文献】
相关期刊论文 前10条
1 张国华;;低氧运动下AMPK与体脂调节相关激素的研究进展[J];成都体育学院学报;2011年01期
2 康青凌;;简述AMPK及其在脂肪组织中的功能表现[J];运动;2011年16期
3 黄涛;孙海生;夏志;;AMPK、能量代谢与运动的关系研究[J];吉林体育学院学报;2006年04期
4 刘霞;金其贯;罗强;;运动和膳食控制对2型糖尿病大鼠脂联素-AMPK-GLUT4通路的影响[J];北京体育大学学报;2013年01期
5 王红;;心肌梗塞后心力衰竭大鼠心脏AMPK表达上调:长期有氧运动的作用[J];山东体育科技;2013年04期
6 张国华;朱一力;曾凡星;;不同强度运动对大鼠骨骼肌AMP/ATP比值和AMPK活性的影响[J];中国体育科技;2008年04期
7 郭光;田荣;曲卉;李杰;;高脂饮食诱导下的肥胖和肥胖抵抗大鼠细胞形态及瘦素、AMPK表达变化的研究[J];北京体育大学学报;2011年03期
8 刘霞;张瑜;徐广艳;罗强;金其贯;;有氧运动联合膳食干预对2型糖尿病大鼠骨骼肌AMPK含量和活性的影响[J];西安体育学院学报;2011年03期
9 龚豪杰;谢谨;张楠;姚璐;张缨;;不同强度运动对AMPKα2三种不同基因状态鼠MEF2/GLUT4 DNA结合活性的影响[J];体育科学;2011年02期
10 龚豪杰;谢谨;张楠;张缨;;运动对AMPKα2三种不同基因状态鼠骨骼肌细胞核内HDAC5/PGC1-MEF2结合量的影响[J];北京体育大学学报;2012年10期
相关会议论文 前10条
1 ;Co-commitment and Interplay between Akt and AMPK in the Regulation of Endothelial NO Synthase Phosphorylation by Reactive Oxygen Species[A];第九届全国心血管药理学术会议论文集[C];2007年
2 Paul M Vanhoutte;;SIRT1 and AMPK:the Seesaw Effect in Regulating Endothelial Sene-scence[A];第八届海峡两岸心血管科学研讨会论文集[C];2011年
3 李瑾;朱海波;;新结构类型调血脂化合物与靶蛋白AMPK分子间相互作用初步解析[A];全国第十二届生化与分子药理学学术会议论文集[C];2011年
4 宋海燕;李强;孙玉倩;张巾超;邬艳慧;;AMPK结合蛋白的筛选及其与2型糖尿病的关系研究[A];2008内分泌代谢性疾病系列研讨会暨中青年英文论坛论文汇编[C];2008年
5 ;AMPK mediated an apoptotic response to combined effect of hypoxia stress and ER stress[A];2012全国发育生物学大会摘要集[C];2012年
6 ZHANG Jian-wei;MA Xiao-wei;DENG Rui-fen;DING Shan;GU Nan;GUO Xiao-hui;;Genetic variability in AMPKαl gene may have synergetic effect with smoking on risk of coronary artery disease in chinese type 2 diabetics[A];中华医学会糖尿病学分会第十六次全国学术会议论文集[C];2012年
7 姚远;周京军;裴建明;;AMPK介导无钙预处理心肌保护作用[A];中国生理学会第九届全国青年生理学工作者学术会议论文摘要[C];2011年
8 季乐乐;Haifeng Zhang;Feng Gao;;A novel mechanism of preconditioning:Attenuating reperfusion injury through enhanced myocardial glucose uptake via insulin-stimulated Akt and AMPK activation[A];中国生理学会第十届全国青年生理学工作者学术会议论文摘要[C];2013年
9 WU Qiao;;The orphan nuclear receptor Nur77 regulates AMPK activity through LKB1 subcellular localization in glucose metabolism[A];细胞—生命的基础——中国细胞生物学学会2013年全国学术大会·武汉论文摘要集[C];2013年
10 Jia-Wei Wu;;Conserved elements in allosteric regulation of AMPK[A];中国生物化学与分子生物学会第十一次会员代表大会暨2014年全国学术会议论文集——专题报告二[C];2014年
相关重要报纸文章 前2条
1 黄敏;精力充沛基因决定?[N];新华每日电讯;2011年
2 实习生 程凤;不爱锻炼可能与基因缺失有关[N];科技日报;2011年
相关博士学位论文 前10条
1 陈雷;AMP激活的蛋白质激酶(AMPK)调控机制的研究[D];清华大学;2010年
2 张秀娟;TSH调节肝脏HMG-CoA还原酶磷酸化修饰的研究[D];山东大学;2014年
3 赵顺玉;消积饮联合CIK通过AMPKα/Sp1/EZH2/DNMT1相关通路抗肺癌生长的作用机制[D];广州中医药大学;2015年
4 王红亮;AMPK-α在卤虫胚胎发育过程中对细胞有丝分裂调控的研究[D];浙江大学;2015年
5 周锡红;三甲基甘氨酸通过AMPK途径影响脂肪沉积的研究[D];浙江大学;2015年
6 刘效磊;AMPK/mTOR介导有氧运动提高骨骼肌胰岛素敏感性的机制研究[D];天津医科大学;2015年
7 刘书东;AICAR诱导激活的AMPK在肝脏抑制TSH/SREBP-2/HMGCR通路[D];山东大学;2015年
8 杜宇;AMPK调控组蛋白糖基化修饰的机制研究[D];华中科技大学;2015年
9 李知行;电针对胰岛素抵抗模型大鼠肝脏AMPK、ACC的干预机制研究[D];广州中医药大学;2016年
10 尉娜;AMPK通过mTOR促进脑缺氧条件下血管内皮细胞作用的研究[D];郑州大学;2016年
相关硕士学位论文 前10条
1 魏苏玉;乙醇对H4-ⅡE细胞脂质代谢及AMPK表达的影响[D];延边大学;2015年
2 陈婷;肌肉特异敲除AMPKα2对小鼠脂代谢的影响[D];西北农林科技大学;2015年
3 郭文文;女贞苷和TBC1D1调控脂联素高聚化的机制研究[D];清华大学;2015年
4 宋科标;罗汉果苷元结构修饰及其激活AMPK磷酸化的构效关系研究[D];华东理工大学;2016年
5 杨于;PIP对细胞糖代谢AMPK信号通路GLUT4的干预研究[D];云南中医学院;2016年
6 魏雅改;PIP对IR细胞模型糖代谢AMPK信号通路上游靶点的干预研究[D];云南中医学院;2016年
7 袁雯;AMPK激动剂对神经病理性疼痛小鼠治疗作用的研究[D];江苏大学;2016年
8 杨俊;二甲双胍预激活AMPK对大鼠肾部分切除术后残余肾脏功能的影响[D];兰州大学;2016年
9 伏晓;ω-3多不饱和脂肪酸通过AMP/LKB1/AMPK信号通路调节肝再生的分子机制[D];南京大学;2016年
10 董晨欢;两种量丰三萜的结构修饰与激活AMPK磷酸化的构效关系研究[D];中国科学院上海药物研究所;2016年
,本文编号:2248609
本文链接:https://www.wllwen.com/jiaoyulunwen/tylw/2248609.html