当前位置:主页 > 教育论文 > 职业教育论文 >

规则空间模型在中职课程教学诊断中的应用研究

发布时间:2021-07-09 13:03
  教学诊断是教学过程中一个十分重要的环节,可以为教学改进提供支撑。师生通过教学诊断可以发现教学中存在的问题,继而调整教学方式。诊断结果能够将学生归为不同的“材”,在此基础上教师可以根据学生的特质进行有针对性地“教”,达到因材施教的目的。认知测量理论基础上的认知诊断模型能够有效的对人内部心理机制进行测量、诊断和评估,较多的被应用于数学、英语教学诊断领域。本文将认知诊断模型—规则空间模型(RSM)应用于中职专业课程的教学诊断中。首先在新一代教育测量理论的基础上,利用规则空间模型(RSM)分析中职课程中的教学内容,揭示章节中的知识结构—属性和属性间的层级关系,之后利用翻新法编制合理的测验项目,并且应用相应的属性来表征所要测验的项目。其次建立规则空间,利用规则空间模型分析属性和属性间的邻接矩阵、可达矩阵、事件矩阵、缩减事件矩阵和典型属性,确定理想反应模式。利用工具软件分析理想反应模式的能力值和警戒指标,所得到的序偶在规则空间中称之为纯规则点。根据实际被试在测验项目上的具体的作答情况判别其为相应的理想反应模式,对被试的实际反应模式判别我们采用了马氏距离法,方法是计算出被试实际反应模式的序偶到所有纯... 

【文章来源】:浙江工业大学浙江省

【文章页数】:57 页

【学位级别】:硕士

【部分图文】:

规则空间模型在中职课程教学诊断中的应用研究


研究技术路线图

属性,逻辑关系,连接矩阵


占洹5?三,将被试的实际作答反应情况归入已确定的理想反应模式之中。2.2.1属性和属性间关系的确定规则空间模型中的属性是指具体的认知加工过程、技能或步骤。属性可以根据已有的测验试卷、专家和有经验的教师或让被试进行“出声思考”等方法来确定。属性与属性之间可以相互独立,也可以存在一定的层级关系。如:在解答某一测验项目时,该项目需要A1、A2、A3、A4等四种属性。而四种属性可能存在这样的关系:要掌握A2,必须掌握A1;要掌握A3,必须掌握A1;要掌握A4必须掌握A3。那么A1、A2、A3、A4就存在如下的层级关系,如图2-1。图2-1属性间的层级关系Figure2-1.Hierarchybetweenattributes2.2.1.1连接矩阵A和可达矩阵R属性和属性之间间直接单向的逻辑关系可用连接矩阵A(AdjacencyMatrices)表示,“1”表示属性间存在单向的直接的逻辑关系,“0”表示属性间不存在这种关系。由图2-1可知A1和A2、A3存在直接的单向的逻辑关系,A1和A4不存在这种关系,A3和A4存在直接的单向的逻辑关系,属性与属性本身是不存在直接的单向的逻辑关系。基于以上原则图2-1中的属性间的层级关系通过转化可以得到连接矩阵A,见表2-1。对连接矩阵A进行布尔加法和乘法等逻辑运算可以得到反映属性间直接或间接逻辑关系的可达矩阵R(ReachabilityMatrix)。R=(A+I)n,其中I是单位矩阵,n=1,2,……m。当n发生变化,而R=(A+I)n不再发生变化时,就得到了可达矩阵R,如表2-2。A1和A2、A3、A4、A3和A4存在直接或间接的逻辑关系,属性与属性本身是存在直接或间接的逻辑关系的,故A2和A2,A3和A3、A4,A4和A4存在这种关系。

属性,规则空间,矩阵,试题


规则空间模型在中职课程教学诊断中的应用研究21图3-1属性间的层级关系Figure3-1.Hierarchybetweenattributes3.3.2测验工具的编制确定了6种属性之后,需要编制相应的测验项目去检测被试的知识掌握情况。研究表明,在规则空间模型的基础上编制的诊断测试卷与传统的测试卷相比具有结构上的显著优势[9]。根据排列组合原理,可以得知所有潜在的测验项目数量是26-1=63。但这六种属性间存在着一定的层级关系如图3-1,所以项目数量将进行缩减。根据图3-2所示的属性和属性之间的层级关系,可获得8×6的缩减事件矩阵Qr(见表3-2)。表3-2缩减事件矩阵QrTable3-2.ReducedeventmatrixQr属性缩减的题目类型12345678A111111111A201111111A300100111A400011111A500001011A600000001根据缩减事件矩阵Qr可知,至少需要8个项目来检测这些属性。如第五列中表示项目4可以检测属性A1、A2和A4。在编制试题方面,一方面要保证实现对每个认知属性进行诊断,也要对每个属性进行多次观察。试题的选定编制借鉴了相关专家关于《IP地址》的研究的成果和相关学科教师的多年的教学经验。本研究依据缩减事件矩阵和上述编制原则编制试题,剔除一些可以不要的考核模式,最终编写了20个项目来测验这六个属性,每题所含属性见表3-3。

【参考文献】:
期刊论文
[1]面向智慧教育的学习分析与智能导学研究——基于RSM的个性化学习资源推送方法[J]. 马玉慧,王珠珠,王硕烁,郭炯.  电化教育研究. 2018(10)
[2]基于多级评分规则空间模型的教学设计及应用[J]. 叶海智,宋婷鸽,黄宏涛,苏明骜,李世珍.  现代教育技术. 2018(08)
[3]职教教学诊断工作视域下的德国课堂教学研究[J]. 郑建萍.  职业技术教育. 2018(23)
[4]基于近似子图的实时教学认知诊断模型设计与应用[J]. 黄宏涛,张若,李海龙,叶海智.  现代远程教育研究. 2018(04)
[5]体验式教学模式在中职数控专业课教学中的构建与实施[J]. 张新香.  职业技术教育. 2018(17)
[6]基于规则空间模型的高中生电化学概念理解的认知诊断[J]. 赵秀娇,胡志刚,肖伟伟.  化学教育(中英文). 2018(07)
[7]基于规则空间模型的化学学习诊断分析[J]. 王秀阁.  化学教育(中英文). 2018(05)
[8]“物质构成的奥秘”的认知诊断研究[J]. 王秀阁,蔡明建.  化学教育(中英文). 2017 (13)
[9]测验Q矩阵中属性指定、选择和验证方法[J]. 宋丽红.  江西师范大学学报(哲学社会科学版). 2017(01)
[10]中等职业学校教学工作诊断与改进的反思[J]. 梁卿.  职教通讯. 2017(01)

博士论文
[1]高中化学计算类问题解决障碍的诊断及矫正[D]. 皇甫倩.华中师范大学 2016

硕士论文
[1]初中生平行四边形学习的认知诊断研究[D]. 周婷婷.西南大学 2016
[2]基于扩展知识空间的诊断方法研究及实现[D]. 钟舒.湖南大学 2011
[3]规则空间模型在初中生化学知识学习诊断与补救中的应用研究[D]. 刘启亮.江西师范大学 2008
[4]小学生加减法计算错误的分类与认知分析[D]. 范士青.华中师范大学 2008
[5]规则空间模型在中学物理教学评价中的实证研究[D]. 黎娇.江西师范大学 2008
[6]C.TEST听力理解测验的诊断性评价研究[D]. 徐式婧.北京语言大学 2007
[7]规则空间模型在口腔内科学分数报告中的应用研究[D]. 黄小平.江西师范大学 2007
[8]规则空间模型在留学生汉语颜色词掌握模式诊断中的应用[D]. 刘慧.北京语言大学 2006



本文编号:3273801

资料下载
论文发表

本文链接:https://www.wllwen.com/jiaoyulunwen/zhiyejiaoyulunwen/3273801.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户a3738***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com