基于平均树值的无圈图博弈有效解
发布时间:2018-04-21 06:38
本文选题:TU博弈 + 无圈图博弈 ; 参考:《运筹与管理》2017年10期
【摘要】:本文对无圈图博弈进行了研究,考虑了大联盟收益不小于各分支收益之和的情况。通过引入剩余公平分配性质,也就是任意两个分支联盟的平均支付变化相等,给出了一个基于平均树值的无圈图博弈有效解。同时,结合有效性和分支公平性对该有效解进行了刻画。特别地,若无圈图博弈满足超可加性时,证明了该有效解一定是核中的元素,说明此时的解是稳定的。最后,通过一案例分析了该有效解的特点,即越大的分支分得的剩余越多,并且关键参与者,也就是具有较大度的参与者可获得相对多的支付。
[Abstract]:In this paper, we study the acyclic graph game and consider the situation that the income of the big league is not less than the sum of the income of each branch. By introducing the property of residual fair distribution, that is, the average payment variation of any two branch alliances is equal, an efficient solution of acyclic graph game based on average tree value is given. At the same time, the efficient solution is characterized by the combination of efficiency and bifurcation fairness. In particular, if the acyclic graph game satisfies superadditivity, it is proved that the efficient solution must be an element in the kernel, which shows that the solution is stable. Finally, the characteristics of the efficient solution are analyzed by a case, that is, the larger the branch is, the more the surplus is, and the key participant, that is, the participant with a large degree, can get a relatively large payment.
【作者单位】: 上海大学管理学院;
【基金】:国家自然科学基金资助项目(11571222)
【分类号】:F224.32
【相似文献】
相关期刊论文 前2条
1 Frank Harary;Bennet Manvel;;拟无圈图[J];数学季刊;1987年03期
2 邵燕灵;高玉斌;;n阶无圈图的指数集[J];西安电子科技大学学报;1996年S1期
,本文编号:1781327
本文链接:https://www.wllwen.com/jingjifazhanlunwen/1781327.html