中国钢铁行业全要素生产率及其影响因素研究
本文选题:钢铁行业 + 数据包络分析 ; 参考:《重庆工商大学》2017年硕士论文
【摘要】:钢铁行业作为国民经济的重要产业,在长期的经济建设过程中,支撑和保障了相关产业的发展,强有力地推动我国工业化和现代化进程。当前我国处于建设制造强国的开局阶段,也是钢铁行业供给侧改革的关键时期。因此,测度我国钢铁行业的全要素生产率的变动情况,分析并找出影响其效率和生产率的有关因素,针对性地提出相关的对策建议,对于我国钢铁行业摆脱目前的发展困境,显得十分迫切,是值得关注并深入研究的重要课题。文章首先对钢铁行业效率与生产率的有关文献进行梳理,接着分析钢铁行业的现状及存在的问题。然后,基于省级面板数据,构建相应的投入产出指标体系,通过DEA模型对28个省市钢铁行业的效率和生产率进行测度研究。最后,选取相关的指标因素,运用回归方法分析这些因素对钢铁行业的作用力度和影响方向。经研究发现:第一,整个钢铁行业的技术效率比较低。从不同区域来看,东部地区在技术效率层面有明显的优势。排名前15位的省市中,东部地区的10个省市全都包含在内,中部地区有4个省市,而西部地区只有1个省市。第二,通过BCC模型分解技术效率发现,钢铁行业技术效率偏低的主要原因在于纯技术效率导致的。规模效率虽然没有达到生产前沿面上,但是绝大多数省市表现出了规模报酬递增的趋势,这表明钢铁行业是存在一定的规模效应的。第三,我国钢铁行业全要素生产率的均值为1.076,年均增长7.6%,技术进步指数年均增长9.4%。除个别省份外,所有省市的生产率是增长的,主要得益于技术进步有效。第四,选取的影响因素指标有一个未通过检验,其余指标在不同程度上都通过了显著性检验,说明这些因素与全要素生产率存在显著性关系。但是有个别指标呈负相关,意味着在推动全要素生产率上并没有起到促进作用。最后,根据研究的结论,提出了相应的对策建议:(1)以创新为驱动突破钢铁行业发展瓶颈(2)以可控的方式实现行业的去产能(3)以兼并重组来提高产业集中度。
[Abstract]:As an important industry of national economy, iron and steel industry supports and guarantees the development of related industries in the process of long-term economic construction, and strongly promotes the industrialization and modernization process of our country. At present, our country is at the beginning stage of building a powerful manufacturing country, which is also the key period of supply-side reform of steel industry. Therefore, to measure the change of total factor productivity of China's iron and steel industry, to analyze and find out the relevant factors that affect its efficiency and productivity, and to put forward relevant countermeasures and suggestions, in order to extricate China's iron and steel industry from the current predicament of development. Appear very urgent, is worthy of attention and in-depth study of an important subject. This paper firstly combs the literatures on efficiency and productivity of iron and steel industry, and then analyzes the present situation and existing problems of steel industry. Then, based on provincial panel data, the corresponding input-output index system is constructed, and the efficiency and productivity of steel industry in 28 provinces and cities are measured by DEA model. Finally, the influence of these factors on iron and steel industry is analyzed by regression method. The research found that: first, the technical efficiency of the whole steel industry is relatively low. From different regions, the eastern region has obvious advantages in terms of technical efficiency. Of the top 15 provinces and cities, 10 are in the east, four in the central region and only one in the west. Secondly, the technical efficiency of iron and steel industry is mainly caused by pure technical efficiency, which is found by BCC model decomposition technology efficiency. Although the scale efficiency does not reach the production front, most provinces and cities show the increasing trend of scale returns, which indicates that there is a certain scale effect in the steel industry. Third, the average value of total factor productivity (TFP) of China's iron and steel industry is 1.076, with an average annual growth of 7.6%, and an average annual growth of 9.4% of the technological progress index. Productivity has increased in all provinces except individual provinces, largely thanks to effective technological progress. Fourth one of the selected influencing factors has failed the test and the others have passed the significance test to varying degrees indicating that these factors have a significant relationship with total factor productivity. However, a few indicators are negatively correlated, meaning that TFP has not been promoted. Finally, according to the conclusion of the research, the paper puts forward the corresponding countermeasures and suggestions: 1) to take innovation as the driving force to break through the bottleneck of iron and steel industry development (2) to realize the deproductivity of the steel industry in a controllable way) to increase the degree of industrial concentration by annexation and reorganization.
【学位授予单位】:重庆工商大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:F224;F426.31
【参考文献】
相关期刊论文 前10条
1 马军;窦超;;我国钢铁行业产能利用率的测度及产能过剩影响因素分析[J];经济问题;2017年02期
2 李凌云;;我国钢铁企业全要素生产率的实证研究[J];时代金融;2014年36期
3 史红亮;陈凯;;我国钢铁行业全要素能源效率实证分析——基于省际面板数据[J];经济问题;2011年09期
4 韩一杰;刘秀丽;;基于超效率DEA模型的中国各地区钢铁行业能源效率及节能减排潜力分析[J];系统科学与数学;2011年03期
5 陈凯;史红亮;;中国钢铁行业全要素生产效率实证分析[J];经济问题;2011年01期
6 刘和东;;中国工业企业的全要素生产率及其影响因素分析[J];统计与决策;2010年13期
7 李春顶;;中国制造业行业生产率的变动及影响因素——基于DEA技术的1998~2007年行业面板数据分析[J];数量经济技术经济研究;2009年12期
8 李尽法;吴育华;潘海生;;基于Malmquist指数的钢铁企业效率测度分析[J];北京理工大学学报(社会科学版);2008年03期
9 王海;;中国钢铁工业技术创新能力与效率变化研究[J];工业技术经济;2007年02期
10 谭英平;;中国钢铁工业出口竞争力的国际比较[J];兰州学刊;2006年08期
相关博士学位论文 前3条
1 刘玉瀛;我国钢铁业的并购重组、市场结构及产业效率研究[D];南开大学;2012年
2 夏绍模;中国钢铁产业的效率与生产率研究[D];重庆大学;2009年
3 赵昌旭;中国钢铁产业组织研究[D];华中科技大学;2006年
相关硕士学位论文 前6条
1 容莉莉;基于省际面板数据的中国钢铁行业全要素能源效率研究[D];华南理工大学;2013年
2 陈业;我国钢铁行业效率研究及影响因素分析[D];华东政法大学;2012年
3 何德;我国钢铁产业技术效率及其影响因素实证研究[D];北京科技大学;2010年
4 王亚;我国钢铁主营业上市公司生产效率分析[D];山东大学;2009年
5 郭海舰;基于钢铁上市公司的钢铁产业效率研究[D];湖南大学;2008年
6 陈舸;基于省际面板数据的中国钢铁工业生产效率研究[D];中南大学;2007年
,本文编号:1957771
本文链接:https://www.wllwen.com/jingjifazhanlunwen/1957771.html