当前位置:主页 > 经济论文 > 经济发展论文 >

基于LSSVM改进模型的北京市能源消费预测研究

发布时间:2018-10-23 07:33
【摘要】:目前,京津冀协同发展提升为国家顶级发展战略,其中产业协同发展是京津冀协同发展的重要先行工作。然而,京津冀产业协同发展中存在扩散效应弱、产业重叠、环境污染严重、资源综合利用效率低等问题,经济发展与资源环境约束的矛盾已成为京津冀产业协同发展面临的主要矛盾。北京作为京津冀协同发展的核心,近年来饱受人口增长、交通拥堵、空气污染等“城市病”的困扰。为解决经济、资源和环境问题,做好能源消费管理是关键。本文研究北京市能源消费影响因素及其发展趋势预测,根据研究结果提出在京津冀协同发展背景下北京市能源消费管理的提升策略,对于北京“大城市病”的解决,产业转移政策的制定,京津冀协同发展的推进,具有重要的现实意义。本文以京津冀协同发展下的北京市能源消费为研究对象,基于1995—2014年的历史数据,在深入分析北京市能源消费发展变化情况和现状的基础上,研究北京能源消费的主要影响因素并据此进行发展趋势的预测。首先,本文在梳理国内外研究现状的基础上,对能源消费及预测理论方法进行了分析阐述;其次,立足于京津冀协同发展战略下,阐述了北京市的功能定位,并对北京市能源消费及其影响因素进行了分析,剖析了各变量逐年变化情况及原因;在此基础上,利用LMDI分解模型从三次产业能源消费和生活消费能源两个角度,将北京市能源消费量分解为人口效应、经济水平效应、产业结构效应、生产能源消费强度、居民消费效应和生活能源消费强度六个方面,并定量测算各因素对能源消费的贡献程度,得到正向驱动的因素主要有人口效应、经济水平效应、居民消费效应;负向驱动因素主要包括产业结构效应、生产能源消费强度、生活能源消费强度。并依照结果分析各个因素对能源消费的影响机制,就此运用布谷鸟算法优化的最小二乘支持向量机算法构建相应的能源消费预测模型。最后,立足于京津冀协同发展,依据北京市发展的历史情况、相关规划政策定义了基准情景和有效协同发展发展两种不同情景,并针对不同情景发展水平的不同设置了不同的人口、实际GDP、第三产业比重、能源消费强度、居民消费水平等参数。而后利用预测模型对2015-2020年北京市能源消费量进行预测,得到如下结果:到2020年,在基准情景下,北京市能源消费总量可达8256万吨标准煤。在有效协同发展下,总量为7894万吨标准煤。最后,根据研究结果提出在京津冀协同发展背景下北京市能源消费发展的提升策略。
[Abstract]:At present, the coordinated development of Beijing, Tianjin and Hebei has become the top development strategy of the country, and the industry coordinated development is the important advance work of the coordinated development of Beijing, Tianjin and Hebei. However, in the coordinated development of Beijing-Tianjin-Hebei industry, there are some problems, such as weak diffusion effect, overlapping industries, serious environmental pollution, low efficiency of comprehensive utilization of resources, etc. The contradiction between economic development and resource and environmental constraints has become the main contradiction that Beijing, Tianjin and Hebei industries are facing. As the core of the coordinated development of Beijing, Tianjin and Hebei, Beijing has been plagued by urban diseases such as population growth, traffic congestion and air pollution in recent years. In order to solve the economic, resource and environmental problems, energy consumption management is the key. This paper studies the influencing factors of Beijing's energy consumption and forecasts its development trend. According to the research results, it puts forward the promotion strategy of Beijing's energy consumption management under the background of the coordinated development of Beijing-Tianjin-Hebei, so as to solve the problem of "big city disease" in Beijing. The formulation of industrial transfer policy and the promotion of Beijing-Tianjin-Hebei coordinated development have important practical significance. Based on the historical data from 1995 to 2014, this paper takes the energy consumption of Beijing under the coordinated development of Beijing, Tianjin and Hebei as the research object, and analyzes the changes and the present situation of the energy consumption in Beijing. The main influencing factors of energy consumption in Beijing are studied and the development trend is forecasted accordingly. Firstly, on the basis of combing the current research situation at home and abroad, this paper analyzes and expounds the energy consumption and prediction theory. Secondly, based on the cooperative development strategy of Beijing, Tianjin and Hebei, it expounds the function orientation of Beijing. Based on the analysis of the energy consumption and its influencing factors in Beijing, and the analysis of the changes and reasons of each variable year by year, this paper uses the LMDI decomposition model to analyze the energy consumption of the tertiary industry and the energy consumption from the perspective of daily energy consumption. The energy consumption in Beijing is divided into six aspects: population effect, economic level effect, industrial structure effect, production energy consumption intensity, resident consumption effect and living energy consumption intensity. Quantificationally measuring the contribution of various factors to energy consumption, we can get that the positive driving factors mainly include population effect, economic level effect, resident consumption effect, negative driving factors mainly include industrial structure effect, production energy consumption intensity, Energy consumption intensity. According to the results, the influence mechanism of various factors on energy consumption is analyzed, and the prediction model of energy consumption is constructed by using the least squares support vector machine (LS-SVM) algorithm optimized by cuckoo algorithm. Finally, based on the coordinated development of Beijing-Tianjin-Hebei, and according to the historical situation of Beijing's development, the relevant planning policies define two different scenarios, the benchmark scenario and the effective coordinated development scenario. Different population, actual GDP, tertiary industry proportion, energy consumption intensity, resident consumption level and other parameters are set according to the different development level of different scenarios. Then the energy consumption of Beijing from 2015 to 2020 is predicted by using the forecasting model. The results are as follows: under the standard scenario, the total energy consumption of Beijing can reach 82.56 million tons of standard coal by 2020. In the effective coordinated development, the total amount of 78.94 million tons of standard coal. Finally, according to the research results, the promotion strategy of Beijing's energy consumption is put forward under the background of Beijing, Tianjin and Hebei coordinated development.
【学位授予单位】:华北电力大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:F206;F224

【参考文献】

相关期刊论文 前10条

1 苏素;杨腾;;中国能源消费影响因素分析与预测——基于协整与误差修正模型[J];生态经济;2016年06期

2 付立东;张金锁;冯雪;;GA-SA模型预测中国能源需求[J];系统工程理论与实践;2015年03期

3 沈镭;刘立涛;王礼茂;陈枫楠;张超;沈明;钟帅;;2050年中国能源消费的情景预测[J];自然资源学报;2015年03期

4 段宏波;朱磊;范英;;能源-环境-经济气候变化综合评估模型研究综述[J];系统工程学报;2014年06期

5 朱文辉;宋锋华;;中国能源消费预测分析——ARIMA模型的运用[J];克拉玛依学刊;2014年05期

6 孙巍;赫永达;;中国能源消费与经济增长的因果分析——基于Divisia指数法和Toda-Yamamota检验[J];暨南学报(哲学社会科学版);2014年05期

7 天津经济课题组;张丽恒;王黎明;虞冬青;孟力;曲宁;仲成春;;京津冀一体化的综述与借鉴[J];天津经济;2014年04期

8 孟晓艳;余予;张志富;李钢;王帅;杜丽;;2013年1月京津冀地区强雾霾频发成因初探[J];环境科学与技术;2014年01期

9 吴尧萍;王远;林晓梅;谷学明;赵卉卉;赵晨;;江苏省能源需求预测及二氧化碳减排研究[J];长江流域资源与环境;2013年07期

10 杨波;谭章禄;;基于Logistic模型的中国国家能源消费总量预测研究[J];科技管理研究;2013年12期

相关博士学位论文 前2条

1 王文超;中国省区能源消费与二氧化碳排放驱动因素分析及预测研究[D];大连理工大学;2013年

2 张丽峰;中国能源供求预测模型及发展对策研究[D];首都经济贸易大学;2006年

相关硕士学位论文 前3条

1 王健;基于时间序列分析的宁夏能源消费预测[D];宁夏大学;2015年

2 邓鸿鹄;北京市能源消费预测方法比较研究[D];北京林业大学;2013年

3 张晓梅;能源消费预测及其在能源管理中应用的研究[D];大连理工大学;2006年



本文编号:2288519

资料下载
论文发表

本文链接:https://www.wllwen.com/jingjifazhanlunwen/2288519.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户8faa4***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com