当前位置:主页 > 经济论文 > 经济发展论文 >

基于稀疏鲁棒M-投资选择模型的鲁棒Half算法

发布时间:2019-01-03 20:58
【摘要】:为得到鲁棒、稀疏的投资组合,提出稀疏鲁棒M-投资选择模型,并且基于L1/2正则化理论和Half阈值算法,构建鲁棒Half阈值算法求解稀疏鲁棒M-投资选择问题.数值实验表明,该算法不仅比Lasso算法收敛速度更快,而且在期望值固定的情况下得到的风险更小、更平稳.
[Abstract]:In order to obtain a robust and sparse portfolio, a sparse robust M- investment selection model is proposed. Based on L1 / 2 regularization theory and Half threshold algorithm, a robust Half threshold algorithm is constructed to solve the sparse robust M- investment selection problem. Numerical experiments show that the proposed algorithm not only converges faster than the Lasso algorithm, but also has a lower and more stable risk when the expected value is fixed.
【作者单位】: 西安工程大学理学院;
【基金】:国家自然科学基金资助项目(11201362) 陕西省教育厅自然科学专项基金资助项目(14JK1305)
【分类号】:F224;F830.59


本文编号:2399861

资料下载
论文发表

本文链接:https://www.wllwen.com/jingjifazhanlunwen/2399861.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户b6647***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com