固定收益市场利率期限结构建模及其应用研究
发布时间:2020-06-06 23:21
【摘要】: 固定收益市场利率期限结构建模及其应用,主要包括传统利率期限结构理论、利率期限结构建模的均衡方法、利率期限结构建模的无套利方法和利率风险测度与管理四个方面的研究内容。 代表性的传统利率期限结构理论为预期理论、市场分割理论和流动性偏好理论,其中,对基于流动性偏好溢价的预期假说,分别采用单位根、协整分析、向量误差修正模型、因子分解技术进行实证检验,结果表明由各个国债回购利率所构成的利率系统仅由一个共同的随机趋势驱动,利率价差的预测能力与利率的波动程度相关,对去除长期记忆成分后未来利率变化的短暂成分的预测能力显著增强,而对于短期利率序列的纯长期记忆成分的预测能力则很差。 在利率期限结构建模的广义均衡框架下,一方面将传统的息票剥离法和样条估计方法有效结合,提出了扩展的息票剥离法,并通过直接对利率期限结构模型的函数形式进行设定,避免了在使用扩展息票剥离法时必须引入附加方程的问题;另一方面,在CKLS的扩展框架下,采用广义矩估计和极大似然估计方法,对五个短期利率模型进行了最优估计、模型选择和参数偏差校正,并将估计得到的最优模型的参数结果用于随机利率变动情形下的认股权证定价。 在利率期限结构建模的HJM框架下,推导得到了远期利率动力学过程的无套利漂移限制,并采用分解技术将其分解成两个成分函数,以简化HJM类模型的参数估计过程。根据此方法进行的实证研究表明,三因子HJM模型具有相对平稳的指数衰减结构,可以准确地表示取样期间内的国债远期利率期限结构。在分析远期利率波动结构与期限结构动力学过程内在联系的基础上,给出了HJM类模型的马尔可夫化框架,重点研究了在HJM框架下的纯扩散过程中引入随机跳跃成分以及不同波动设定下的马尔可夫系统转换问题,并采用基于控制变量技术的蒙特卡罗方法分别对确定性和状态依赖性远期利率波动结构下的初始债券和初始债券期权价格进行了仿真实现。 在HJM框架下,将传统久期和凸度扩展到广义随机久期和凸度,分析了单因子和双因子HJM模型下的债券投资组合免疫,并对传统久期和凸度以及HJM框架下的三种不同远期利率波动设定下的广义随机久期和凸度进行了实证计算。
【图文】:
第三章 现代利率期限结构建模的均衡模型及其实证研究317,0.0281,0.0294,0.0236,0.0292,0.0295,0.0379}。根据以上得到的 12 个债券的到期期限时间点的收益率值再进行三次样条即可得到收益率值1 2 82{ , , , }BR = R R R的解向量,同时利用 Maple 软件可分计出 2002 年 1 月 21 日和 2002 年 3 月 21 日上海证券交易所国债收益率曲图 3-1 所示。
【学位授予单位】:天津大学
【学位级别】:博士
【学位授予年份】:2007
【分类号】:F224;F275
本文编号:2700427
【图文】:
第三章 现代利率期限结构建模的均衡模型及其实证研究317,0.0281,0.0294,0.0236,0.0292,0.0295,0.0379}。根据以上得到的 12 个债券的到期期限时间点的收益率值再进行三次样条即可得到收益率值1 2 82{ , , , }BR = R R R的解向量,同时利用 Maple 软件可分计出 2002 年 1 月 21 日和 2002 年 3 月 21 日上海证券交易所国债收益率曲图 3-1 所示。
【学位授予单位】:天津大学
【学位级别】:博士
【学位授予年份】:2007
【分类号】:F224;F275
【引证文献】
相关期刊论文 前1条
1 车辚;;基于期权调整的有效久期在CMO证券产品设计中的应用[J];中国外资;2012年20期
相关硕士学位论文 前1条
1 韩俊萌;我国国债利率期限结构研究[D];兰州理工大学;2011年
,本文编号:2700427
本文链接:https://www.wllwen.com/jingjifazhanlunwen/2700427.html