基于DEA模型中国各省工业能源效率与节能减排分析
发布时间:2018-02-09 10:25
本文关键词: 工业部门 能源效率 节能减排 DEA模型 Malmquist指数 出处:《天津大学》2014年硕士论文 论文类型:学位论文
【摘要】:工业化的推进极大促进了我国经济、社会的发展。在2010年,中国超越日本成为世界第二大经济体。然而,在巨大的发展成就背后,经济发展与资源供给、生态环境之间的矛盾正日益严重。中国已成为世界上最大的二氧化碳排放与能源消费国家。面对日益严峻的碳减排压力,中国政府已经认识到目前的发展方式难以维持经济的稳定增长。工业部门是我国最大的能源消耗终端部门,同时也是最大的碳排放部门。在2007-2009年间,工业部门的能源消耗一直占到能源消耗总量的70%左右。因此,控制工业部门的能源消耗以及二氧化碳排放则是我国目前提高能源效率以及节能减排工作的关键所在。本文以中国30个省市的工业部门为研究对象,构建一非径向DEA模型衡量各地区2004至2011年间的工业能源效率状况。在研究过程中,从静态能源效率与动态能源效率两个角度进行了相关分析。在了解各地区样本期间的能源效率状况后,又从能源结构调整的角度,探究决策制定单元的能源节约与二氧化碳减排的潜力。研究结果表明:在2004至2011年间,全国的工业能源效率水平不高。并且工业部门的能源效率存在明显的区域差异性。无论是从评价结果有效的地区数、还是样本期间的效率平均值,东部地区的能源效率状况都明显好于中、西部地区。这与我国目前的工业发展现状也是一致的。在运用Malmquist指数方法对各地区动态能源效率进行研究过程中,在样本期间内,中国工业部门的能源效率持续保持上升的趋势,工业部门的能源效率都发生着积极的变化。就具体增速而言,中部地区的能源效率改善的程度最高。在研究能源结构调整对于降低能源消耗减少二氧化碳排放的作用时,发现:降低煤炭资源在总能源消耗中的比例可以有效减少各类能源消耗以及降低二氧化碳的排放量。但是,能源结构调整是一长期的过程,为了使能源结构调整达到更好的效果,需要同时提高各类能源的运输能力。
[Abstract]:In 2010, China overtook Japan to become the second largest economy in the world. However, behind the tremendous development achievements, economic development and resource supply. The contradiction between ecological environment is becoming more and more serious. China has become the largest carbon dioxide emission and energy consumption country in the world. The Chinese government has recognized that the current development approach is difficult to sustain steady economic growth. The industrial sector is the country's largest energy consumption terminal sector and also the largest carbon emission sector. In 2007-2009, Energy consumption in the industrial sector has always accounted for about 70% of the total energy consumption. Controlling the energy consumption and carbon dioxide emission in the industrial sector is the key to improving energy efficiency and energy saving and emission reduction in China. This paper takes the industrial sector of 30 provinces and cities in China as the research object. A non-radial DEA model was constructed to measure the industrial energy efficiency in various regions from 2004 to 2011. This paper analyzes the correlation between static energy efficiency and dynamic energy efficiency. After understanding the energy efficiency of each region during the sample period, it also analyzes the energy structure from the perspective of energy structure adjustment. Explore the potential for energy conservation and carbon dioxide emissions reduction in decision making units. The results show that between 2004 and 2011, The level of industrial energy efficiency in China is not high, and there are obvious regional differences in energy efficiency in the industrial sector. Whether from the number of regions where the evaluation results are valid, or from the average efficiency of the sample period, The energy efficiency in the eastern region is obviously better than that in the central and western regions. This is consistent with the present industrial development situation in China. In the course of studying the dynamic energy efficiency in each region by using the Malmquist index method, during the sample period, The energy efficiency of China's industrial sector continues to maintain an upward trend, and there are positive changes in the energy efficiency of the industrial sector. The central region has seen the greatest improvement in energy efficiency. In studying the role of energy restructuring in reducing energy consumption and reducing carbon dioxide emissions, It is found that reducing the proportion of coal resources in total energy consumption can effectively reduce all kinds of energy consumption and reduce carbon dioxide emissions. However, energy restructuring is a long-term process. In order to achieve better effect of energy structure adjustment, it is necessary to improve the transportation capacity of all kinds of energy at the same time.
【学位授予单位】:天津大学
【学位级别】:硕士
【学位授予年份】:2014
【分类号】:X322;F424
【参考文献】
相关期刊论文 前8条
1 刘晓月;;我国雾霾天气现状与综合治理分析[J];科技风;2014年13期
2 黄德春;董宇怡;张长征;刘炳胜;;基于三阶段DEA模型中国区域能源效率研究(英文)[J];Journal of Resources and Ecology;2014年02期
3 赵露;方鹏骞;;我国省域卫生资源利用效率的Malmquist跨期分析[J];中国卫生经济;2013年02期
4 魏新强;张宝生;;反向思维的定权重DEA中国能源效率分析[J];技术经济与管理研究;2013年01期
5 黄森;蒲勇健;;基于三阶段Malmquist模型的我国服务业效率研究[J];山西财经大学学报;2011年07期
6 林伯强;姚昕;刘希颖;;节能和碳排放约束下的中国能源结构战略调整[J];中国社会科学;2010年01期
7 李世祥;成金华;;中国能源效率评价及其影响因素分析[J];统计研究;2008年10期
8 王庆一;中国的能源效率及国际比较(上)[J];节能与环保;2003年08期
,本文编号:1497714
本文链接:https://www.wllwen.com/jingjilunwen/gongyejingjilunwen/1497714.html