关于特定的金融衍生产品定价和投资组合模型的研究
发布时间:2017-07-25 21:37
本文关键词:关于特定的金融衍生产品定价和投资组合模型的研究
更多相关文章: 价值函数 看涨期权 Ho-Lee利率模型 资产负债 投资组合 Hamilton-Jacobi Bellman方程 二次效用函数
【摘要】:数理金融和金融数学的核心研究内容的是金融资产定价和投资组合。金融资产定价是对金融衍生产品进行合理定价的研究,投资组合则是研究投资机构或投资人进行资产套期保值和风险对冲的重要理论方法。本文对金融资产定价和投资组合问题进行了研究,我们从以下两个方面分别讨论了在金融市场下的金融资产定价和连续时间投资组合问题。第一个方面是研究Black-Scholes期权定价问题。根据Black-Scholes期权定价理论知,假设持有人在期权的有效期内不进行股票交易。然而期权持有人买入期权后还可能在期权的有效期内进行交易的投资策略。这里我们假定按照非线性的投资策略持有股票,并给出期权的定价公式,在适当的条件下新期权定价公式退化为经典的定价公式,并且它的价格更便宜。第二个方面是研究连续时间资产投资组合问题。研究二次效用下投资组合的最优投资策略,我们运用随机控制中的动态规划原理的技术得到期望效用最大化的值函数满足Hamilton-Jacobi-Bellman方程简记(HJB),最后研究在二次效用函数情形下的最优投资策略,并得到了在二次效用函数下的显示表达式。
【关键词】:价值函数 看涨期权 Ho-Lee利率模型 资产负债 投资组合 Hamilton-Jacobi Bellman方程 二次效用函数
【学位授予单位】:西华师范大学
【学位级别】:硕士
【学位授予年份】:2016
【分类号】:F224;F830.9
【目录】:
- 摘要5-6
- Abstract6-7
- 第1章 前言7-12
- 1.1 所选课题的研究背景及意义7-8
- 1.1.1 金融衍生产品定价的研究背景及意义7
- 1.1.2 投资组合问题的研究背景及意义7-8
- 1.2 本课题国内外研究现状8-10
- 1.2.1 期权定价问题研究的发展现状8-9
- 1.2.2 连续时间情形下投资组合问题的发展现状9-10
- 1.3 本文研究的思路及内容10-12
- 第2章 基于非线性的动态投资策略下的看涨期权定价问题研究12-25
- 2.1 研究背景12
- 2.2 模型的假设12
- 2.3 建立投资策略及收益函数12-14
- 2.4 对看涨期权进行定价14-24
- 2.5 结论24-25
- 第3章 基于二次效用情形下投资组合问题的最优策略研究25-35
- 3.1 研究背景25-26
- 3.2 模型假设和模型建立26-28
- 3.3 HJB方程和最优投资策略28-30
- 3.4 二次效用函数30-34
- 3.5 结论34-35
- 第4章 本文总结与进一步工作展望35-36
- 4.1 本文总结35
- 4.2 进一步工作展望35-36
- 4.2.1 非线性投资策略期权定价模型的进一步研究35
- 4.2.2 连续时间情形下投资组合问题的进一步研究35-36
- 参考文献36-41
- 致谢41-44
- 在校期间的科研情况44
【参考文献】
中国期刊全文数据库 前10条
1 常浩;荣喜民;;Ho-Lee利率模型下资产-负债管理的最优投资策略[J];工程数学学报;2012年03期
2 张海l,
本文编号:573426
本文链接:https://www.wllwen.com/jingjilunwen/hongguanjingjilunwen/573426.html