当前位置:主页 > 经济论文 > 建筑经济论文 >

输电线路格构式结构风荷载特性研究

发布时间:2018-05-05 16:06

  本文选题:三角塔 + 全联合变电构架 ; 参考:《湖南大学》2015年硕士论文


【摘要】:随着我国经济和社会的发展,我国对能源的需求越来越大,其中电力资源由于其输送方便、清洁卫生等优点而被广泛应用于我们生产生活的方方面面。正是由于电力资源的深入普及及其与我们的息息相关性,其能否安全顺利运行会对我们的生产和生活产生重要影响。而影响电力运行安全的其中一个重要威胁就是由于风灾造成的输变电结构的破坏。而本文正是基于此,以风洞试验为基础结合有限元模拟的方式对输变电格构式结构的风荷载特性进行了研究,得出了一些实用结论。主要研究内容如下:(1)输电塔架体型系数测试。通过对三角形角钢塔架和钢管-角钢组合塔架进行风洞试验,得到了三角形塔架体型系数的变化规律。将角钢塔架风洞测试的体型系数值与现行规范取值进行对比分析发现测试值比建筑结构荷载规范取值大11%左右,规范取值偏于不安全。最后提出了一种关于钢管-角钢组合塔架风荷载体型系数的取值方法,补充国内现行规范对此类结构体型系数定义的不足。(2)全联合变电构架体型系数测试。通过对全联合构架进行干扰系数的风洞测试,得到不同位置处的横梁相应的干扰系数取值。在单梁体型系数测试值和不同位置处横梁相应的干扰系数测试值的基础上,将二者相乘得到全联合构架最终的横梁体型系数取值。(3)全联合变电构架风振响应分析。根据谐波合成法的原理对全联合变电构架的脉动风速时程进行数值模拟,由得到的脉动风速时程数据,通过对全联合变电构架建立有限元模型,以时域分析的方法对其风振响应进行了有限元分析,计算了不同阻尼比、不同约束条件情况下结构的风振响应。通过选取结构典型位置处的结果进行比较分析,介绍对结构风振产生显著影响的一些主要诱因。(4)全联合变电构架风振系数分析。在全联合变电构架风振响应分析的结果的基础上,根据Davenport提出的阵风荷载因子法通过编制MATLAB程序对其风振系数进行计算。并研究了不同阻尼比、不同支座约束形式对其产生的影响,同时将计算结果与现行规范中风振系数的取值进行比较,发现高耸结构设计规范和建筑结构荷载规范(按高耸结构)的取值过于保守,比计算值均大10%以上,最大甚至大37%;而计算值与变电站建筑结构设计规程的取值相对较为接近,且其沿高度方向的变化规律也与其一致。
[Abstract]:With the development of our economy and society, the demand for energy in our country is increasing, among which the power resources are widely used in all aspects of our production and life because of its advantages of convenient transportation, clean and sanitary, etc. It is precisely because of the popularization of power resources and its close relationship with us that its safe and smooth operation will have an important impact on our production and life. One of the important threats to the safety of electric power operation is the destruction of transmission and transformation structure caused by wind disaster. Based on the wind tunnel test and finite element simulation, this paper studies the wind load characteristics of grid structure of transmission and transformation, and draws some practical conclusions. The main contents of this study are as follows: 1) Measurement of transmission tower shape coefficient. Through wind tunnel test on triangle angle steel tower and steel pipe-angle steel composite tower, the variation law of shape coefficient of triangle tower is obtained. By comparing the shape coefficient of the wind tunnel test of angle steel tower frame with the current code, it is found that the test value is about 11% larger than the value of the code for building structure load, and the value of the code is more unsafe than that of the code for building structure. In the end, a method for determining the wind load shape coefficient of steel pipe / angle steel composite tower is proposed, which complements the lack of definition of shape coefficient of this kind of structure in the current domestic code. 2) the shape coefficient of the fully combined transformer truss is tested. Through the wind tunnel test of the interference coefficient of the whole joint frame, the corresponding interference coefficients of the beams at different positions are obtained. On the basis of the test value of single beam shape coefficient and the corresponding interference coefficient at different positions, the wind vibration response analysis of the whole joint truss is obtained by multiplying the two values to obtain the final shape coefficient of the cross beam of the whole joint frame. According to the principle of harmonic synthesis method, the pulse wind speed time history of fully combined substation frame is numerically simulated. Based on the obtained pulsating wind speed time history data, a finite element model is established for the fully combined substation frame. The response of wind-induced vibration is analyzed by finite element method in time domain, and the wind-induced vibration response of the structure under different damping ratio and constraint condition is calculated. By comparing and analyzing the results of selecting the typical location of the structure, this paper introduces some main inducements, I. e., the wind vibration coefficient analysis of the fully combined substation frame, which has a significant effect on the wind vibration of the structure. Based on the results of wind vibration analysis of fully combined substation frame, the wind vibration coefficient is calculated by compiling MATLAB program according to the gust load factor method proposed by Davenport. The effects of different damping ratios and different bearing constraints on the damping ratio are also studied. The calculated results are compared with the values of wind-induced vibration coefficients in the current code. It is found that the values of the design code for high-rise structures and the load codes for building structures (according to high-rise structures) are too conservative, which are more than 10% larger than the calculated values, and the maximum value is even larger than 37%, while the calculated values are relatively close to those of the design rules for substation structures. And its variation along the height direction is consistent with it.
【学位授予单位】:湖南大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:TU312.1

【参考文献】

相关期刊论文 前10条

1 严波;陈科全;肖洪伟;李力;易文渊;;风荷载作用下覆冰导线脱冰后的最大横向摆幅[J];应用力学学报;2013年06期

2 朱海维;马勇杰;吴伟康;;1000kV构架风振系数的计算研究[J];电力建设;2013年02期

3 谢强;谢超;管政;;特高压8分裂导线风荷载干扰效应风洞试验[J];高电压技术;2011年09期

4 韩文庆;刘建秋;商文念;;500kV全联合构架风荷载影响分析[J];低温建筑技术;2011年09期

5 陈寅;陈传新;郑威;张华;;1000kV变电构架风振系数的计算[J];电力建设;2011年09期

6 赵桂峰;谢强;梁枢果;李杰;;输电塔架与输电塔-线耦联体系风振响应风洞试验研究[J];建筑结构学报;2010年02期

7 沈国辉;默增禄;孙炳楠;楼文娟;;突然断线对输电塔线体系的冲击作用研究[J];振动与冲击;2009年12期

8 肖正直;李正良;汪之松;晏致涛;韩枫;;1000kV汉江大跨越塔线体系风洞实验与风振响应分析[J];中国电机工程学报;2009年34期

9 潘峰;童建国;盛晓红;叶尹;孙炳楠;陈勇;;1000kV大型薄壁钢管变电构架风致振动响应研究[J];工程力学;2009年10期

10 赵桂峰;谢强;梁枢果;李杰;;高压输电塔线体系风致非线性振动气弹模型风洞试验[J];同济大学学报(自然科学版);2009年09期

相关博士学位论文 前4条

1 肖正直;特高压输电塔风振响应及等效风荷载研究[D];重庆大学;2009年

2 尹鹏;大跨越输电塔—线体系动力特性和风振控制研究[D];华中科技大学;2009年

3 王锦文;强风作用下输电线塔结构塑性疲劳破坏机理研究[D];武汉理工大学;2008年

4 郭勇;大跨越输电塔线体系的风振响应及振动控制研究[D];浙江大学;2006年

相关硕士学位论文 前10条

1 项国通;格构式圆截面钢管塔风荷载特性的风洞试验研究[D];浙江大学;2013年

2 丁建智;750kV超长变电构架风振响应和风振系数研究[D];西安建筑科技大学;2012年

3 何文飞;高耸格构式塔架风振响应研究[D];湖南大学;2009年

4 李雪;高压输电塔—线体系气象条件致灾因素分析[D];大连理工大学;2008年

5 王杨;风荷载下输电塔体系动力可靠性分析[D];大连理工大学;2008年

6 任月明;风雨激励下输电塔线体系的动力响应分析[D];大连理工大学;2007年

7 徐永波;输电塔法兰联接节点螺栓松动等效模型及风振响应分析[D];武汉理工大学;2007年

8 刘智虎;汉江大跨越输电线路风振系数及风振响应研究[D];重庆大学;2007年

9 吴昀;输电高塔风振系数研究[D];同济大学;2007年

10 梁峰;输电塔的风振控制研究[D];华中科技大学;2006年



本文编号:1848350

资料下载
论文发表

本文链接:https://www.wllwen.com/jingjilunwen/jianzhujingjilunwen/1848350.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户ab49e***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com