矿井提升机基础动态监测与有限元分析
发布时间:2018-05-21 16:44
本文选题:提升机基础 + 监测 ; 参考:《辽宁工程技术大学》2015年硕士论文
【摘要】:矿井扩能改造会增加提升机基础的负担,提升机的异常振动也会对基础造成不良影响,为此需对提升机基础的振动特性展开研究。引入弹性半空间计算模式,采用Lysmer比拟法计算基础的振幅,并通过解Lysmer理论方程组,得出正弦荷载下基础位移与时间的方程,对基础的位移时程曲线进行求解。对提升机基础进行动力测试,采集了基础振动的加速度时程曲线,并进行功率谱分析,得出了基础振动的各阶频率。建立基础的有限元模型,进行特征值分析,得出基础各阶振型的频率。进行动力时程分析,确定基础振动的危险加速度。最终得出了以下结果和结论:1)根据解Lysmer方程的计算结果,理论解分为两个部分:由z1(t)构成的随时间而衰减的阻尼振动和由z2(t)构成的周期性的受迫振动。2)提升机基础受到卷筒振动、减速器电机运转、钢绳牵引等动力荷载的共同作用,受力较为复杂,从而导致其频率也比较复杂。根据提升机基础振动功率谱分析结果,在提升机正常运行时,其振动频率皆为高频,对大块式基础影响不大。3)通过基础的特征值分析,基础各阶模态的特征值远远小于通过功率谱分析所得到的各阶频率,因此提升机正常运行时,其振动频率不会对基础造成不良影响。4)根据动力时程分析结果,基础振动的位移时程曲线与加速度时程曲线有很高的相关性,这是由于提升机基础的刚度很大,在其振动时自身的模态响应影响很小。5)在1.5倍的正常运行荷载下,基础的振动位移达到限值,此时的振动加速度为危险加速度。6)通过将有限元模拟结果与实测值与理论计算值相对比,可知所建立的有限元模型是合理的,此方法可以应用于提升机基础的监测预警系统。7)系统实际运行结果表明,所建立监测预警系统在对于提升机基础的安全监测与危险预警中是可靠的。
[Abstract]:The reconstruction of mine capacity expansion will increase the burden on the foundation of the hoist, and the abnormal vibration of the hoist will also have a bad effect on the foundation. Therefore, it is necessary to study the vibration characteristics of the foundation of the hoist. In this paper, the elastic half-space model is introduced, and the amplitude of foundation is calculated by Lysmer analogy method. By solving the equations of Lysmer theory, the equations of displacement and time of foundation under sinusoidal load are obtained, and the displacement time history curve of foundation is solved. The dynamic test of the hoist foundation is carried out, the acceleration time history curve of the foundation vibration is collected, and the power spectrum analysis is carried out, and the frequency of the foundation vibration is obtained. The finite element model of foundation is established and eigenvalue analysis is carried out, and the frequency of each mode of foundation is obtained. Dynamic time history analysis is carried out to determine the dangerous acceleration of foundation vibration. Finally, the following results and conclusions are obtained: 1) based on the results of the solution of the Lysmer equation, The theoretical solution is divided into two parts: damping vibration, which is made up of z1t), and periodic forced vibration, which is composed of z2t). The foundation of the hoist is subjected to the vibration of reel, the motor of reducer, the traction of steel rope, and so on. The force is more complex, resulting in a more complex frequency. According to the results of vibration power spectrum analysis of the hoist foundation, when the hoist is in normal operation, its vibration frequency is all high frequency, which has little effect on the mass foundation. 3) through the analysis of the eigenvalue of the foundation, The eigenvalues of the fundamental modes are much smaller than those obtained by power spectrum analysis, so the vibration frequency of the hoist will not cause adverse effects on the foundation when it is in normal operation. 4) according to the results of dynamic time history analysis, The displacement time history curve of foundation vibration has a high correlation with acceleration time history curve. This is because the stiffness of the foundation of the hoist is very large, and the influence of its own modal response during vibration is very small. 5) under the normal running load of 1.5 times, the displacement time history curve of the foundation vibration has a high correlation with the acceleration time history curve. The vibration displacement of foundation reaches the limit, and the vibration acceleration is dangerous acceleration. 6) by comparing the finite element simulation result with the measured value and the theoretical calculation value, we can know that the finite element model is reasonable. This method can be applied to the monitoring and warning system of hoist foundation. 7) the practical operation results show that the established monitoring and warning system is reliable in safety monitoring and danger warning for hoist foundation.
【学位授予单位】:辽宁工程技术大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:TU476
【参考文献】
相关期刊论文 前10条
1 郭曜欣;;基于MIDAS/GTS的边坡抗滑桩最优埋设部位的探讨[J];土工基础;2014年03期
2 刘茂盛;张应之;郭永生;;动力机器基础的概念设计[J];工业建筑;2014年06期
3 侯小强;田树涛;;基于Midas/GTS高边坡开挖及加固施工稳定性分析[J];路基工程;2013年06期
4 王春玲;周波;胡勇;;弹性半空间地基与四边自由异性矩形板相互作用的研究[J];应用力学学报;2013年04期
5 李洪杰;杜计平;齐帅;;矿井工作面顶板突水安全预警系统构建研究[J];中国矿业;2013年07期
6 汪伟忠;卢明银;李洪杰;李珂;;矿井提升机安全预警系统的构建研究[J];矿山机械;2013年02期
7 苏长胜;;矿井提升机控制技术研究现状与发展[J];工矿自动化;2013年02期
8 李伟;张献州;吴玉苗;;基于Midas GTS的隧道3维变形建模与可视化研究[J];测绘与空间地理信息;2012年10期
9 高峰;赵冯兵;;地下结构静-动力分析中的人工边界转换方法研究[J];振动与冲击;2011年11期
10 陈佩佩;刘秀娥;;矿井顶板突水预警系统研究与应用[J];煤炭科学技术;2010年12期
,本文编号:1919983
本文链接:https://www.wllwen.com/jingjilunwen/jianzhujingjilunwen/1919983.html