单面受火预制复合保温墙体灾后轴压承载力研究
本文选题:预制复合保温墙体 + 单面受火 ; 参考:《东南大学》2015年硕士论文
【摘要】:随着我国国民经济的快速增长,能源短缺问题日益严重,节能工作已成为可持续发展的重要保证,其中建筑节能已成为提高社会能源使用效率的首要方面。预制复合保温墙体可实现预制、承重、保温节能于一体,符合当今我国大力开展建筑节能工作的政策,因而得到了广泛的使用。但是随之而来的建筑火灾隐患也增大,为了对此种新型墙体进行准确的损伤鉴定及火灾后的修复与加固工作,对其进行火灾后的力学分析显得尤为紧迫。基于此,本文进行了预制复合保温墙体的火灾后轴压性能的试验研究,并结合有限元软件对其灾后力学性能进行了理论分析。主要研究内容如下:(1)系统整理和归纳了高温后混凝土的残余抗压强度、残余抗拉强度、弹性模量、受压应力-应变本构关系和受拉应力-应变本构关系以及高温后钢筋的极限强度、屈服强度、弹性模量、延伸率和应力-应变本构关系。(2)分别进行了两榀常温预制复合保温墙体及两榀相应保温层厚度的火灾后墙体的轴压承载力试验研究,对四榀剪力墙的试验过程进行了描述,并将两组常温墙体和火后墙体的极限抗压承载力、荷载-位移曲线、荷载-混凝土应变曲线及荷载-钢筋应变曲线进行了对比分析。研究表明:保温层厚度为40mm和60mm的火灾后保温墙体的极限承载力分别比常温降低21.8%和16.8%;保温层厚度相同时,在相同荷载作用下,火灾后墙体的位移、混凝土应变及钢筋应变均大于常温墙体;无论是常温墙体还是火后墙体,在相同荷载作用下,由于墙体总厚度不变,有效的混凝土厚度随保温层厚度的增大而减小,故保温层厚度较大墙体的位移、混凝土应变及钢筋应变均稍大于保温层厚度较小的墙体。(3)利用通用有限元分析软件分析了各个墙体在轴压下的力学性能,并与试验结果进行对比分析,为理论分析提供了思路。(4)基于规范给出的剪力墙偏心受压承载力计算公式,采用三台阶模型作为钢筋和混凝土高温后强度计算模型,并考虑受火时间、轴压比及保护层厚度等因素对温度场分布的影响,对单面受火后预制复合保温墙体正截面偏心受压承载力计算公式进行了推导和分析。
[Abstract]:With the rapid growth of China's national economy, the problem of energy shortage is becoming more and more serious. Energy conservation has become an important guarantee of sustainable development, among which building energy conservation has become the most important aspect to improve the efficiency of social energy use. Prefabricated composite insulation wall can realize prefabrication, load bearing, heat preservation and energy conservation, which is in line with the policy of building energy conservation in our country, so it has been widely used. However, the hidden danger of building fire also increases, in order to accurately identify the damage of this new wall and repair and reinforcement work after the fire, it is particularly urgent to carry out mechanical analysis after the fire. Based on this, the axial compression performance of prefabricated composite insulation wall after fire is studied, and the mechanical properties of prefabricated composite insulation wall after fire are analyzed theoretically with the finite element software. The main research contents are as follows: (1) the residual compressive strength, residual tensile strength, elastic modulus of concrete after high temperature are systematically sorted out and summarized. Compressive stress-strain constitutive relation, tensile stress-strain constitutive relation and ultimate strength, yield strength, elastic modulus of steel bar after high temperature, The axial compression capacity of two prefabricated composite insulation walls at room temperature and two walls with corresponding thickness of insulation layer after fire were studied respectively. The experimental process of four shear walls was described. The ultimate compressive capacity, load-displacement curve, load-concrete strain curve and load-reinforcement strain curve of two groups of normal temperature wall and post fire wall are compared and analyzed. The results show that the ultimate bearing capacity of the fire insulation wall with the thickness of 40mm and 60mm is 21.8% and 16.8% lower than that of the normal temperature respectively, and the displacement of the wall after fire occurs under the same load when the thickness of the insulation layer is the same. Both the strain of concrete and the strain of reinforcing bar are larger than that of the wall at room temperature, and the effective thickness of concrete decreases with the increase of the thickness of insulation layer under the same load, whether the wall at room temperature or the wall after fire, because the total thickness of the wall remains unchanged. Therefore, the displacement, the strain of concrete and the strain of steel bar are slightly larger than those of the wall with smaller thickness of insulation layer. The mechanical properties of each wall under axial compression are analyzed by using the general finite element analysis software. Compared with the test results, this paper provides a train of thought for theoretical analysis. (4) based on the formula given in the code, the three-step model is used as the strength calculation model of steel bar and concrete after high temperature. Considering the influence of fire time, axial compression ratio and thickness of protective layer on the distribution of temperature field, the calculation formula of eccentricity compression bearing capacity of normal section of prefabricated composite insulation wall after single side fire is deduced and analyzed.
【学位授予单位】:东南大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:TU398.9
【相似文献】
相关期刊论文 前10条
1 苏恒强;蔡健;郭远翔;黄炎生;;劲性梁-钢管砼柱不穿心节点轴压承载力的试验[J];广东工业大学学报;2006年01期
2 杨隆宇;李正良;魏磊;康东昌;马震毅;段贝;;高强钢管轴压承载力研究[J];西安建筑科技大学学报(自然科学版);2010年02期
3 唐明雄;;管壁宽厚比对矩形钢管混凝土柱轴压承载力影响分析[J];中外建筑;2011年06期
4 肖阿林;何益斌;黄频;李艳;;型钢-钢管混凝土短柱轴压承载力可靠度分析[J];建筑结构学报;2010年08期
5 祝磊;叶桢翔;赵岩;;焊缝建模对T型圆钢管节点轴压承载力计算的影响[J];建筑结构;2013年S2期
6 梅力彪,周云;夹层橡胶支座轴压承载力的非线性有限元分析[J];地震工程与工程振动;2002年04期
7 程亮;关富玲;;充气直管硬化对轴压承载力影响的研究[J];工程设计学报;2010年04期
8 王娟;赵均海;朱倩;张志超;刘琦;;纤维增强复合材料-混凝土-钢双壁空心管短柱的轴压承载力[J];工业建筑;2011年11期
9 林翔;钢筒仓中圆柱筒薄壳轴压承载力的确定方法[J];福州大学学报(自然科学版);2004年03期
10 张春梅,阴毅,周云;影响钢管混凝土柱轴压承载力的因素分析[J];工业建筑;2004年10期
相关会议论文 前2条
1 祝磊;叶桢翔;赵岩;;焊缝建模对T型圆钢管节点轴压承载力计算的影响[A];城市地下空间综合开发技术交流会论文集[C];2013年
2 彭昌宪;吉伯海;;钢管轻集料混凝土中长柱轴压承载力研究[A];第六届全国土木工程研究生学术论坛论文集[C];2008年
相关硕士学位论文 前4条
1 高明珠;单面受火预制复合保温墙体灾后轴压承载力研究[D];东南大学;2015年
2 林俊龙;福建土楼整体夯土结构轴压承载力的试验研究[D];华侨大学;2014年
3 高恒;中厚壁冷弯钢管柱轴压承载力试验研究与分析[D];武汉理工大学;2007年
4 刘朝;钢管约束高强混凝土短柱轴压承载力分析[D];长安大学;2012年
,本文编号:1953756
本文链接:https://www.wllwen.com/jingjilunwen/jianzhujingjilunwen/1953756.html