基于磁记忆的建筑钢结构应力表征技术研究
[Abstract]:The conventional nondestructive testing technique of steel structure can only detect macroscopic defects, but can not identify the hidden damage without obvious physical discontinuity. As a new nondestructive testing technique, metal magnetic memory testing (MMMT) can effectively detect the microscopic defects and local stress concentration in ferromagnetic materials by using the special response characteristics of geomagnetic field to detect hidden damage. However, the study of this technique is limited to uniaxial tensile test of material specimens, and the stress form is single, which can not meet the requirements of the main load-bearing structures in steel structures. Therefore, combining theory with experiment, this paper focuses on the three-point bending test of steel plate specimen based on material property and the four-point bending test of steel beam based on component, and analyzes the variation rule of magnetic memory signal under different stress. The stress characterization parameters suitable for bending members of steel structures are presented. The main works are as follows: (1) through theoretical and model analysis, the reasons of metal magnetic memory testing technology for detecting hidden damage of steel structures are explained, and the applicability of conventional stress characterization parameters in the detection of building steel structures is discussed. The results show that due to the existence of magneto-mechanical effect, there is an inevitable relationship between magnetic memory signal and stress and strain of ferromagnetic component, and the normal magnetic field HP (y) zero crossing point can only reflect the stress state of the specimen after fracture. The change trend of magnetic memory signal in elastic-plastic stage is not obvious. (2) based on the three-point bending test of Q235B steel plate specimens, the structural stress characterization parameters based on material properties are studied. The results show that with the increase of transverse load, the intensity of magnetic memory signal HP (y) increases gradually, and the phenomenon of "wave peak" or "trough" appears in the stress concentration area. Magnetic memory signal gradient K has a "peak-peak" change and a zero crossing point in the stress concentration area, which can be used to judge the stress concentration area of the specimen and to realize the initial judgment of early damage location. HP (y)? The curve increases rapidly near yield strength and appears "inflection point", while HP (y)? The curve showed a linear increase relationship, no obvious "inflection point", with the help of HP (y)? The stress corresponding to the "inflection point" of the curve can be used to characterize the yield strength of the tensile edge of the bending specimen. (3) through the four-point bending test of Q235B steel beam, the magnetic field of the building steel structure is studied to characterize the stress parameters. The stress concentration in different parts of bending specimens is evaluated effectively. The variation trend of magnetic memory signal curve is similar to the bending diagram of the specimen under vertical load. The curve of magnetic memory signal on the detection line can be used to predict the bending moment distribution of the bending specimen. The "zero crossing point" phenomenon can approximately determine the position of stress concentration after flange buckling, but there exists "zero drift" phenomenon. The higher the peak value of the stress concentration, the higher the degree of stress concentration and the greater the probability of buckling. The gradient curve peak maxK can be used as the basis for judging the dangerous moment before buckling. (4) there is an inevitable relationship between magnetic memory signal and bending tensile stress. The stress-strain curve of the specimen shows a similar change trend, and the magnetic memory signal shows the corresponding state with the different stress state of the flange of the specimen. There is a linear relationship between the magnetic memory signal on the surface of the web and the horizontal compressive stress, and there is no obvious inflection point. At the same strain, there is a difference in the intensity of the magnetic memory signal, so it is only suitable for qualitative evaluation.
【学位授予单位】:西安建筑科技大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:TU391;TU317
【相似文献】
相关期刊论文 前10条
1 王欢;康宜华;;磁记忆现象与应力场的关系[J];无损检测;2006年10期
2 王丹;徐滨士;董世运;董丽虹;;关于金属磁记忆检测中背景磁场抑制的讨论[J];无损检测;2007年02期
3 陈敇;王晓凤;杨恩;李路明;;铁磁构件拉压试验中的磁记忆效应研究[J];无损检测;2007年05期
4 丁克勤;周舰;何石;王洪柱;张旭;黄冬林;;多通道磁记忆检测仪研制[J];现代科学仪器;2007年04期
5 陈星;刘昌奎;陶春虎;董世运;王丹;石常亮;;金属材料拉伸损伤的磁记忆表征[J];无损检测;2009年05期
6 任吉林;王进;范振中;宋凯;唐继红;;一种磁记忆检测定量分析的新方法[J];仪器仪表学报;2010年02期
7 高广兴;沈功田;胡斌;张万岭;李金海;吴占稳;;在用起重机金属磁记忆检测的信号特征及验证[J];无损检测;2010年05期
8 黄海鸿;刘儒军;张曦;汪燕;刘志峰;;面向再制造的510L钢疲劳裂纹扩展磁记忆检测[J];机械工程学报;2013年01期
9 周培;任吉林;孙金立;宋凯;王振;;李萨如图在磁记忆二维定量检测中的应用[J];航空学报;2013年08期
10 任吉林;孙金立;周培;饶琪;王振;;磁记忆二维检测的研究与工程应用[J];机械工程学报;2013年22期
相关会议论文 前10条
1 丁克勤;周舰;何石;王洪柱;张旭;黄冬林;;多通道磁记忆检测仪研制[A];国产科学仪器应用、创新和产业化学术研讨会论文集(一)[C];2007年
2 石常亮;董世运;徐滨士;何鹏;王丹;;单向静载拉伸下合金钢表面的磁记忆效应[A];第七届全国表面工程学术会议暨第二届表面工程青年学术论坛论文集(二)[C];2008年
3 万升云;;铁道车辆车轮辐板孔的磁记忆检测研究[A];2007'湖北·武汉NDT学术年会论文集[C];2007年
4 崔常京;刘桂良;董世运;陈群志;董丽虹;;静载作用下典型结构钢磁记忆信号的变化规律[A];第七届全国MTS材料试验学术会议论文集(二)[C];2007年
5 龚洪宾;江泉;钱宏南;陈勤发;纪冈成;刘少印;刘宇;;磁记忆应力测定技术在热处理过程中的应用[A];西南地区第十届NDT学术交流会论文集[C];2009年
6 郭鹏举;赵海江;关卫和;;参数设置对磁记忆技术判断缺陷灵敏度的影响[A];安徽省机械工程学会成立50周年论文集[C];2014年
7 孙国豪;张春江;刘军;李希成;柏明清;唐春容;赵立凡;;磁记忆检测技术在压力管道检测中的应用[A];第三届全国管道技术学术会议压力管道技术研究进展精选集[C];2006年
8 王金海;;环状链条的磁记忆检测[A];全国火电大机组(600MW级)竞赛第8届年会论文集[C];2004年
9 任文坚;;磁记忆无损检测技术的现状及展望[A];2014陕西省第十四届无损检测年会暨产品展示会论文集[C];2014年
10 钟力强;李路明;;检测环境磁场对磁记忆方法评价应力集中的影响[A];北京机械工程学会2008年优秀论文集[C];2008年
相关重要报纸文章 前1条
1 闫家魁;俄罗斯首创金属磁记忆检测方法[N];中国机电日报;2002年
相关博士学位论文 前5条
1 万升云;磁记忆检测原理及其应用技术的研究[D];华中科技大学;2006年
2 邢海燕;基于磁记忆技术的疲劳损伤评估及寿命预测[D];哈尔滨工业大学;2007年
3 石常亮;面向再制造铁磁性构件损伤程度的磁记忆/超声综合无损评估[D];哈尔滨工业大学;2011年
4 王文江;基于驻波疲劳累积损伤的磁记忆效应及反问题研究[D];大庆石油大学;2006年
5 冷建成;基于磁记忆技术的铁磁性材料早期损伤诊断方法研究[D];哈尔滨工业大学;2012年
相关硕士学位论文 前10条
1 张世亮;X80管线钢疲劳损伤的磁记忆检测试验研究[D];燕山大学;2015年
2 焦江娜;基于磁记忆的金属管道损伤检测及评估方法研究[D];哈尔滨工业大学;2015年
3 曹世仑;承压设备磁记忆诊断技术实验研究[D];浙江工业大学;2014年
4 于伟;基于磁记忆技术的钻具检测及修复评价[D];东北石油大学;2015年
5 韩亚潼;基于信息熵与D-S理论联合的焊缝缺陷磁记忆定量化研究[D];东北石油大学;2015年
6 王建锃;基于磁记忆的2Cr13试样热处理质量评价研究[D];东北石油大学;2015年
7 孙燕华;Q245R钢磁特性对应力的映射规律研究[D];山东大学;2016年
8 陈怀天;铁磁性材料磁记忆检测的几个关键性问题研究[D];南昌航空大学;2016年
9 赵国峰;不同应变状态下金属磁记忆临界特征研究[D];东北石油大学;2016年
10 王r,
本文编号:2131231
本文链接:https://www.wllwen.com/jingjilunwen/jianzhujingjilunwen/2131231.html