格构角钢立柱轴压试验及有限元分析
发布时间:2018-07-20 13:41
【摘要】:以组合墙体中的格构角钢立柱为对象,针对0.8mm,1.0mm,1.2mm,1.5mm,1.8mm 5种不同的厚度,通过轴压试验和有限元分析研究格构角钢立柱的轴压极限承载力和破坏模态,并进行对比。结果表明:同一厚度的3个格构角钢立柱试件,由于初始几何缺陷的不同,其轴压承载力、荷载-位移关系曲线有一定差别;由于对初始几何缺陷十分敏感,当厚度值较小时,3个试件的轴压载力相差较大,而当厚度较大时,3个试件的轴压承载力相差很小;由于绕弱轴方向的刚度和转动刚度都很低,格构角钢立柱基本发生的是绕弱轴弯曲失稳破坏,或同时伴随有立柱中部的局部扭曲或凸曲现象;格构角钢立柱通过有限元分析得到的荷载-轴向位移曲线和试验曲线走势一致,破坏模态基本相同,且极限承载力相符合较好,说明了文中提出的针对格构角钢立柱的有限元建模方法的正确性和合理性。
[Abstract]:Taking the lattice angle column in the composite wall as the object, the ultimate bearing capacity and failure mode of the lattice angle steel column are studied by axial compression test and finite element analysis, aiming at 5 different thickness of 0.8 mm ~ 1.0 mm ~ (1.2 mm) ~ 1.5 mm ~ (-1) mm ~ (1.8 mm), and compared with each other. The results show that the axial bearing capacity and load-displacement curves of three lattice angle column specimens of the same thickness are different due to the difference of initial geometric defects, and because of their sensitivity to initial geometric defects, When the thickness value is small, the axial ballast force of the three specimens differs greatly, but when the thickness is larger, the axial compression capacity of the three specimens is very small, because the stiffness and rotation stiffness around the weak axis are very low. The basic occurrence of lattice angle column is buckling failure around weak axis, or accompanied by local distortion or convexity in the middle of column. The load-axial displacement curve obtained by finite element analysis is consistent with the test curve, the failure mode is basically the same, and the ultimate bearing capacity is in good agreement. The correctness and rationality of the finite element modeling method proposed in this paper for lattice angle column are explained.
【作者单位】: 武汉理工大学土木工程与建筑学院;
【基金】:湖北省科技厅项目(2014BAA122) 湖北省建设科技项目
【分类号】:TU398.9
本文编号:2133728
[Abstract]:Taking the lattice angle column in the composite wall as the object, the ultimate bearing capacity and failure mode of the lattice angle steel column are studied by axial compression test and finite element analysis, aiming at 5 different thickness of 0.8 mm ~ 1.0 mm ~ (1.2 mm) ~ 1.5 mm ~ (-1) mm ~ (1.8 mm), and compared with each other. The results show that the axial bearing capacity and load-displacement curves of three lattice angle column specimens of the same thickness are different due to the difference of initial geometric defects, and because of their sensitivity to initial geometric defects, When the thickness value is small, the axial ballast force of the three specimens differs greatly, but when the thickness is larger, the axial compression capacity of the three specimens is very small, because the stiffness and rotation stiffness around the weak axis are very low. The basic occurrence of lattice angle column is buckling failure around weak axis, or accompanied by local distortion or convexity in the middle of column. The load-axial displacement curve obtained by finite element analysis is consistent with the test curve, the failure mode is basically the same, and the ultimate bearing capacity is in good agreement. The correctness and rationality of the finite element modeling method proposed in this paper for lattice angle column are explained.
【作者单位】: 武汉理工大学土木工程与建筑学院;
【基金】:湖北省科技厅项目(2014BAA122) 湖北省建设科技项目
【分类号】:TU398.9
【相似文献】
相关期刊论文 前10条
1 胡占东;夏峰海;李春彬;孙家齐;田胜祥;;灌注桩中内插超长支撑钢立柱安装的施工技术[J];建筑施工;2010年06期
2 熊楚炎;;逆作法中钢立柱垂直度偏差原因分析及防治措施[J];建筑施工;2013年07期
3 周圣平;杨剑;赵超;徐伟;彭飞;杨坤;;逆作法工程桩内插钢立柱的施工技术研究[J];建筑施工;2013年04期
4 蒋庭辉;;球罐钢立柱耐热砼保护层的施工[J];石油工程建设;1991年02期
5 郭恺;钢立柱安装快速找正方法[J];水利电力机械;2005年04期
6 黎海航;;曹安商贸城钢立柱桩逆作法施工方法[J];探矿工程(岩土钻掘工程);2006年01期
7 孙占林;;精确埋置钢立柱基础锚栓组的施工技术[J];铁道建筑;2006年11期
8 占智贵;陈海波;;大型空间曲线钢立柱优化设计[J];低温建筑技术;2010年12期
9 姚宪恒;;四盘放线车[J];建筑工人;1990年12期
10 仲葆文,李定鸿,朱立峰;灌注桩钢立柱垂直度控制系统的设计和研制[J];华东理工大学学报;2004年03期
相关重要报纸文章 前1条
1 中国建筑第二工程局(沪);项目为载体 科技为先导[N];建筑时报;2006年
相关硕士学位论文 前1条
1 周文;逆作法中基坑变形的数值模拟及钢立柱性能的分析[D];广西大学;2015年
,本文编号:2133728
本文链接:https://www.wllwen.com/jingjilunwen/jianzhujingjilunwen/2133728.html