当前位置:主页 > 经济论文 > 建筑经济论文 >

高应力条件下层状岩体力学特性及时效破裂机制研究

发布时间:2018-08-24 12:44
【摘要】:层状岩体的力学特性及时效破裂演化规律是岩石力学领域重要的研究课题之一。大量实例表明,层状岩体工程的失稳与破坏很多都存在着滞后性,特别是在高地应力环境中开挖卸荷,需要很长一段时间调整岩体应力从而达到新的平衡,有时甚至会发生时滞性岩爆和时效大变形,严重危害工程的施工安全与长期稳定。因此,层状岩体在高应力条件下的力学特性和时效细观破裂演化规律需要进行更深入的认识和研究。鉴于此,本文在丹巴石英云母片岩真三轴试验的基础上,借助三维颗粒离散元理论,引入SJ模型、PSC模型和超级单元clump技术,构建了符合层状岩体的细观力学模型,对不同结构面及不同应力状态和应力路径下层状岩体的力学特性和时效破裂进行了研究。本文的主要研究工作如下:1.以指数型细观内应力驱动的损伤速率和三维颗粒离散元为基础,结合能够描述细观层面时效破裂的PSC模型和描述节理效应的SJ模型,提出了能够模拟层状岩体时效破裂效应的细观力学计算方法,用于模拟岩体的瞬态和时效破裂的结构面效应。同时,结合三维颗粒离散元和地震矩张量理论,给出了模拟岩体瞬态和时效破裂的AE计算方法及空间定位方法。2.基于三维颗粒流理论,通过引入SJ模型、PSC模型和超级单元clump技术,并依据丹巴水电站石英云母片岩的SEM矿物成份检测结果,建立了基于矿物形颗粒状的层状岩体细观结构模型,根据真三轴瞬态压缩试验和流变试验结果以及岩石细观力学参数识别方法,确定了石英云母片岩的瞬态和时效细观力学参数,构建了层状岩体的时效细观力学数值模型。3.基于层状岩体时效细观力学数值模型,对不同节理倾角条件下岩石进行了真三轴瞬态力学试验,研究了层状岩体瞬态力学特征的结构面效应和AE特征,论述层状岩体变形破裂演化规律及细观演化机理。结果表明:层状岩体的破坏模式随着结构面倾角的变化,由岩石本身控制转变为岩石、结构面共同控制,再转变为由岩石本身控制,其中,在45°~75°之间,岩石的破坏模式主要由结构面控制。4.基于层状岩体时效细观力学数值模型,对不同节理倾角条件下岩石进行了真三轴蠕变数值试验,研究层状岩体时效破裂的结构面效应和AE特征,论述岩石时效破裂演化规律及细观演化机理。结果表明:随着结构面倾角的增加,层状岩体时效变形模式由衰减蠕变转化为稳态-加速蠕变转化界限在结构面倾角45°左右;在衰减蠕变类型中,结构面倾角越小,收敛速率越大,收敛时间越快,随着结构面倾角的增加,收敛时间逐步增加,收敛速率越小;在加速蠕变类型中,层状岩体破坏时间近似呈“U”形,倾角45°左右时,岩体破坏时间较长,随着倾角增加,岩体破坏时间逐步降低,在倾角60°左右时破坏时间最短,随着倾角持续增加,岩体破坏时间逐步增加。
[Abstract]:The mechanical properties and aging fracture evolution of layered rock mass are one of the important research topics in rock mechanics field. A large number of examples show that many of the instability and failure of layered rock mass engineering have hysteresis, especially in the environment of high ground stress excavation unloading, it needs a long time to adjust the rock mass stress to achieve a new balance. Sometimes, delay rockburst and large deformation will occur, seriously endangering the construction safety and long-term stability. Therefore, the mechanical properties of layered rock mass under high stress conditions and the evolution law of aging meso-fracture need to be further understood and studied. In view of this, based on the true triaxial test of Danba quartz mica schist, with the aid of three-dimensional particle discrete element theory, the SJ model and super unit clump technique are introduced to construct a meso-mechanical model for layered rock mass. The mechanical properties and aging fracture of layered rock mass under different structural planes, different stress states and stress paths are studied. The main research work of this paper is as follows: 1. Based on the damage rate driven by the exponential meso-stress and the three-dimensional particle discrete element, the PSC model which can describe the aging rupture of the meso-plane and the SJ model which can describe the joint effect are combined. In this paper, a mesomechanical method which can simulate the aging fracture effect of layered rock mass is presented, which can be used to simulate the transient state of rock mass and the structural plane effect of aging fracture. At the same time, based on the theory of three dimensional particle discrete element and seismic moment Zhang Liang, the AE calculation method and spatial location method for simulating the transient and aging rupture of rock mass are presented. Based on the three-dimensional particle flow theory, by introducing SJ model and super unit clump technology, and based on the results of SEM mineral composition detection of quartz mica schist in Danba Hydropower Station, a meso-structure model of layered rock mass based on mineral granulation is established. According to the results of the true triaxial transient compression test and rheological test and the identification method of the meso-mechanical parameters of rock, the transient and aging meso-mechanical parameters of quartz mica schist are determined, and the numerical model of time-dependent mesomechanics of layered rock mass is constructed. Based on the numerical model of time-dependent mesomechanics of layered rock mass, the true triaxial transient mechanical tests of rocks with different joint dip angles were carried out, and the structural plane effect and AE characteristics of transient mechanical characteristics of layered rock mass were studied. The evolution law of deformation and fracture of layered rock mass and the mechanism of mesoscopic evolution are discussed. The results show that the failure mode of layered rock mass changes from rock itself to rock, and then to rock itself, and then to rock itself with the change of slope angle of structural plane, in which, between 45 掳and 75 掳, the failure mode of layered rock is controlled by rock itself. The failure mode of rock is mainly controlled by structural plane. Based on the aging mesomechanical numerical model of layered rock mass, the true triaxial creep numerical tests of rocks with different joint inclination angles were carried out. The structural plane effect and AE characteristics of aging fracture of layered rock mass were studied. This paper discusses the evolution law of aging fracture of rock and the mechanism of meso-evolution. The results show that with the increase of the dip angle of the structural plane, the aging deformation model of layered rock mass changes from attenuated creep to steady-state accelerated creep transformation at about 45 掳of the structural plane inclination, and the smaller the dip angle of the structural plane is in the type of attenuated creep. The larger the convergence rate is, the faster the convergence time is. With the increase of the inclination angle of the structure plane, the convergence time increases gradually, and the convergence rate is smaller. In the accelerated creep type, the failure time of layered rock mass is approximately "U" shape, and the slope angle is about 45 掳. The time of rock mass failure is longer, with the increase of inclination angle, the time of rock mass failure decreases gradually, and the time of rock mass failure increases gradually with the increase of inclination angle, which is the shortest when the inclination angle is about 60 掳.
【学位授予单位】:长江科学院
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:TU45

【相似文献】

相关期刊论文 前10条

1 肖森宏;层状岩体的铂矿层[J];地质地球化学;1985年12期

2 郭牡丹;王述红;张航;徐源;;层状岩体强度数值模拟及其讨论[J];东北大学学报(自然科学版);2010年10期

3 范志杰;;四川白马辉长岩质层状岩体中斜长石的形变与分布[J];矿物岩石;1982年01期

4 朱章森;胡远来;姜若维;;攀西基性超基性层状岩体分层的数学地质研究[J];矿物岩石;1983年01期

5 汪云亮,王旺章,李巨初,韩文喜;白马层状岩体岩浆分离结晶作用[J];成都地质学院学报;1990年03期

6 张桂民;李银平;施锡林;杨春和;王李娟;;一种交互层状岩体模型材料制备方法及初步试验研究[J];岩土力学;2011年S2期

7 左双英;叶明亮;唐晓玲;续建科;史文兵;;层状岩体地下洞室破坏模式数值模型及验证[J];岩土力学;2013年S1期

8 郭履和;杨本锦;张冬梅;曾晴;;攀西地区白马和红格层状岩体分异特征的数学地质论证[J];矿床地质;1984年03期

9 王启耀;赵法锁;;考虑偶应力的层状岩体地下洞室开挖模拟[J];西安科技大学学报;2006年01期

10 朱泽奇;盛谦;梅松华;张占荣;;改进的遍布节理模型及其在层状岩体地下工程中的应用[J];岩土力学;2009年10期

相关会议论文 前10条

1 肖远;王思敬;杜永廉;;层状岩体结构变形破坏研究[A];第四届全国工程地质大会论文选集(二)[C];1992年

2 李仲奎;陈振声;;层状岩体三维边界元应力分析中的面力不连续问题[A];第二届全国青年岩石力学与工程学术研讨会论文集[C];1993年

3 张海东;;层状岩体弹塑性问题的有限单元分析[A];地下工程经验交流会论文选集[C];1982年

4 左双英;叶明亮;唐晓玲;续建科;史文兵;;层状岩体地下洞室破坏模式数值模型及验证[A];《岩土力学》vol.34 增刊1 2013[C];2013年

5 肖远;;轴向力与横向力共同作用下层状岩体的临界荷载问题[A];水电与矿业工程中的岩石力学问题——中国北方岩石力学与工程应用学术会议文集[C];1991年

6 熊诗湖;邬爱清;周火明;;层状岩体变形试验的尺寸效应[A];第十届全国岩石力学与工程学术大会论文集[C];2008年

7 张子新;华安增;;层状岩体滑落的分形模型[A];第二届全国青年岩石力学与工程学术研讨会论文集[C];1993年

8 李仲奎;H.A.Mang;;层状岩体边界单元法中的奇异性问题[A];首届全国青年岩石力学学术研讨会论文集[C];1991年

9 范雷;唐辉明;王亮清;;基于离散单元法的层状岩体地基极限承载力初探[A];中国软岩工程与深部灾害控制研究进展——第四届深部岩体力学与工程灾害控制学术研讨会暨中国矿业大学(北京)百年校庆学术会议论文集[C];2009年

10 陈安敏;顾金才;沈俊;明治清;;层状岩体加固中锚固体周围岩层塌落深度的近似计算方法[A];地基基础工程与锚固注浆技术:2009年地基基础工程与锚固注浆技术研讨会论文集[C];2009年

相关博士学位论文 前4条

1 梅松华;层状岩体开挖变形机制及破坏机理研究[D];中国科学院研究生院(武汉岩土力学研究所);2008年

2 周莲君;层状岩体破坏特征的试验和数值分析及其边坡稳定性研究[D];中南大学;2009年

3 杨乐;基于Cosserat介质理论的层状岩体均匀化数值分析与应用研究[D];重庆大学;2009年

4 刘彬;软硬相间层状岩体工程地质特性及作为高混凝土重力坝坝基岩体的适宜性研究[D];成都理工大学;2010年

相关硕士学位论文 前10条

1 程鹏;高应力条件下层状岩体力学特性及时效破裂机制研究[D];长江科学院;2015年

2 冷霜;层状岩体变形试验的数值模拟[D];西南交通大学;2008年

3 熊诗湖;层状岩体变形特性试验研究[D];长江科学院;2007年

4 李月;层状岩体声学特性研究[D];西华大学;2007年

5 王涛;基于复合材料力学的层状岩体锚固支护系统研究与数值模拟[D];武汉理工大学;2006年

6 王恩波;层状岩体中拱形巷道拱肩破坏机理及合理支护技术研究[D];西安科技大学;2014年

7 田治金;喀斯特环境下层状岩体物理力学参数取值研究[D];贵州大学;2009年

8 刘彬;软硬相间层状岩体变形参数理论研究及工程应用[D];成都理工大学;2006年

9 秦二涛;深埋层状岩体地下硐室稳定性及支护技术研究[D];中南大学;2012年

10 邵培柳;层状岩体开洞地基稳定性分析[D];重庆大学;2014年



本文编号:2200857

资料下载
论文发表

本文链接:https://www.wllwen.com/jingjilunwen/jianzhujingjilunwen/2200857.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户d1c43***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com