当前位置:主页 > 经济论文 > 建筑经济论文 >

液—电混驱改善曳引电梯运行特性及能效的理论与方法

发布时间:2018-08-30 07:40
【摘要】:电梯作为在高层建筑中运送人及货物的垂直设备,在社会现代化进程中起到越来越不可替代的作用。电梯自被发明至今,产品历经多次更新换代和技术升级,一直为人们的出行提供便捷。诸多研究表明,电梯能耗占高层建筑总能耗的20%左右,随着全球能源日趋紧张,高能耗电梯的发展前景不容乐观,能耗问题严重制约其发展。国内电梯保有量随着社会经济快速发展及国民生活水平的提高而急剧上升,有关数据显示,2014年国内电梯总保有量已达360万台,并以每年大约20%的速度增长。在工业生产规模不断扩大的时代,我国发电能力较弱,能源供应疲软,能源供需矛盾日益突出,节能电梯的研究也越来越受到政府、生产厂商和客户的关注。因此实现电梯的节能降耗不仅具有十分重要的经济价值,能够推动电梯行业的快速发展,而且符合我国现阶段绿色和可持续发展的战略。为降低电梯能耗,达到电梯节能运行的目的,本文结合曳引电梯的结构特点、运行特性及能耗特性,提出一种新型液—电混合驱动曳引电梯节能新原理。该原理将液压泵/马达、蓄能器等元件与曳引机驱动系统相结合,组成可实现能量回收利用的液—电混合驱动曳引电梯节能系统。上述系统与曳引电梯自身驱动系统联接耦合,在电梯运行过程中,当曳引机处于发电状态时,大部分重力势能将以液压能的形式储存在蓄能器中;当曳引机处于电动状态时,蓄能器存储的液压能得以释放,从而辅助曳引机工作,最终达到降低能耗、节约电能的目的。仿真及实验结果表明新型节能电梯能够平稳启动,速度控制平稳,具有良好的速度控制性能;该新型节能电梯的节能效率约为15%,可显著降低电梯控制系统和机房温度;新型节能电梯采用现有曳引电梯的控制方法,简化了其控制策略。通过以上研究可知在蓄能器充液过程中随着蓄能器压力的增大,节能电梯曳引机将由发电状态转为电动状态造成二次能耗;在蓄能器放液过程中,由于初始压力较大,蓄能器提供的功率比电梯运行所需功率大而造成能量的二次浪费,因此本文进一步提出一种基于变量泵/马达的转矩补偿方法,仿真分析的结果表明该方法能够大幅降低曳引电梯的能耗,电梯运行基本不消耗电能。电梯能耗作为电梯发展的一个重要问题,是电梯研究的热点问题,但电梯安全事故时有发生,因此曳引电梯的安全性能问题不可小觑。电梯现有的保护装置安全钳—限速系统,可解决电梯由于控制失灵、制动器失灵及突然断电等原因造成轿厢的坠落或超速,但由于机械结构不能完全保证万无一失,因此电梯坠落事故还是不可避免。本课题中曳引电梯新型节能系统采用换向阀控制蓄能器的工作状态,当电梯突然断电时,对于不同类型的换向阀,其断电时的机能是不同的。换向阀处于工作位,当蓄能器充液或者放液状态时,此时泵/马达向电梯提供使电梯停止的反转矩,联合抱闸和安全钳使电梯停止运行;当换向阀处于停止位时,由于四个油口均关闭,此时液压泵/马达不能正反向转动,从而可以阻止电梯的坠落,使电梯处于安全驻停状态。液—电混驱曳引电梯节能原理在降低能耗的同时,还能够兼顾安全性,对于电梯运行来说安全性更加重要,新的原理可保证电梯在所有电气控制失灵的情况下,轿厢平稳运行至停止状态。论文的主要研究内容如下:第一章首先介绍了目前我国电梯市场的发展状况、发展趋势及现有电梯的能耗情况。进而对电梯的发展历史及分类进行综述,重点介绍了曳引电梯节能技术的发展概况和能量回收节能技术的发展及应用。最后基于上述综合分析,提出了本课题的研究意义和主要研究内容。第二章介绍了普通电梯的工作特性作,分析了曳引电梯的基本结构以及电梯处于典型四象限时的工作特性。对不同配重的电梯在不同运行工况时所受的力矩进行了详细分析,并建立了电梯的动力学模型;对电梯的动力学模型进行仿真分析,得到了当电梯配重不同时,电梯在不同载重、不同工况时所受到力矩。进而提出了一种新型的液—电混合驱动曳引电梯节能新原理及方法,分析了节能电梯的工作原理及工作特性。最后对系统中曳引机、各液压元件进行选型,并设计了高能效曳引电梯的控制系统。第三章对提出的高能效电梯节能系统进行了数学建模,主要针对同步曳引机、液压泵/马达、蓄能器等的特点及运行特征进行分析并建立其数学模型。分析计算电梯运行过程中的速度曲线,并对速度、加速度曲线进行仿真。本课题的目标是降低电梯系统的能耗,因此需要对普通曳引电梯能耗进行分析,了解电梯运行过程中电梯能耗的变化规律。本章通过simulationx仿真软件建立了普通曳引电梯模型,对电梯在不同工况运行时的能耗进行了仿真分析。第四章建立了课题所提出的高能效曳引电梯的仿真模型,并对采用不同配重下的电梯运行情况进行仿真分析。在配重为1000kg和1500kg这两种情况下,对普通电梯和节能电梯分别在轻载上行、轻载下行、重载上行、重载下行四种工况运行中的能耗变化情况进行了仿真分析,通过比较计算得到节能电梯的节能效率。进一步对采用变量泵/马达的节能系统,在使用转矩匹配控制后,电梯的节能效果进行了仿真分析。第五章基于上述理论研究及仿真分析,通过对节能电梯系统及结构的详细分析及参数优化,确定了节能电梯的试验元件及试验方案,搭建了高能效曳引电梯能耗试验台。首先对普通电梯在载重不同、运行距离不同工况下能耗进行了试验分析,并与仿真结果进行对比分析。然后将节能系统与曳引机驱动轴联接进行综合试验,通过地面空载试验与楼层空载试验的对比分析,得出节能系统的机械运行效率。进而对节能电梯在不同运行工况时的能耗进行了试验和分析,并与普通电梯的能耗进行对比,得到高能效电梯的节能效率。第六章主要对所作的研究工作进行分析总结,得出了主要的研究性结论,并针对本课题研究问题的不足提出今后的研究方向。课题所做的研究工作均表明,本文首次提出的液—电混合驱动曳引电梯节能新原理及方法是正确的、成功的,不仅具有较好节能效果,而且能够有效提高曳引电梯的安全、可靠性,基本达到预期目标。本论文的研究成果不但是曳引电梯节能方面的发展方向之一,而且在其它垂直提升机械中也具有较好的应用前景。
[Abstract]:Elevator, as a vertical equipment for transporting people and goods in high-rise buildings, plays an increasingly irreplaceable role in the process of social modernization. Since its invention, elevator products have undergone many updates and technological upgrades, and have been providing convenience for people to travel. Many studies have shown that elevator energy consumption accounts for 20% of the total energy consumption of high-rise buildings. With the increasing global energy shortage, the development prospects of high energy consumption elevators are not optimistic, and the energy consumption problem seriously restricts their development. In the era of expanding industrial production scale, China's power generation capacity is weak, energy supply is weak, and the contradiction between energy supply and demand is becoming increasingly prominent. The research of energy-saving elevator has been paid more and more attention by the government, manufacturers and customers. The rapid development of the elevator industry is in line with the strategy of green and sustainable development in our country at present. In order to reduce the energy consumption of the elevator and achieve the purpose of energy-saving operation of the elevator, this paper puts forward a new energy-saving principle of the hydraulic pump/electric hybrid drive traction elevator, which combines the structure characteristics, operation characteristics and energy consumption characteristics of the traction elevator. The motor, accumulator and other components are combined with the tractor drive system to form an energy-saving system of the traction elevator driven by hydraulic-electric hybrid drive. The above-mentioned system is coupled with the traction elevator self-drive system. During the operation of the elevator, when the tractor is in the state of power generation, most of the gravitational potential energy will be hydraulic energy. The hydraulic energy stored in the accumulator can be released when the tractor is in the state of electric power, so as to assist the tractor to reduce energy consumption and save electric energy. The energy-saving efficiency of the new energy-saving elevator is about 15%, which can significantly reduce the elevator control system and the room temperature. The new energy-saving elevator simplifies its control strategy by using the existing traction elevator control method. Secondary energy consumption is caused for the electric state. In the process of accumulator discharging, the power provided by the accumulator is greater than that required by the elevator because of the large initial pressure, which results in the secondary energy waste. Therefore, a torque compensation method based on variable pump/motor is proposed in this paper, and the simulation results show that the method can be greatly improved. Elevator energy consumption, as an important issue in elevator development, is a hot issue in elevator research. However, elevator safety accidents often occur, so the safety performance of the elevator can not be underestimated. The existing safety clamp-speed limit system of elevator protection device can solve the elevator problem. Because of control failure, brake failure and sudden power failure, the car will fall or overspeed, but because the mechanical structure can not be completely guaranteed to be safe, so the elevator fall accident is inevitable. For different types of directional valves, the function is different when the power is cut off. The directional valve is in the working position, when the accumulator is filled with liquid or discharged, the pump/motor provides the reverse torque to the elevator to stop the elevator, and the elevator is stopped by a combination of lock and safety clamp; when the directional valve is in the stop position, because the four oil outlets are closed, this is the case. Hydraulic pump/motor can't rotate forward and backward, so it can prevent the elevator from falling and keep the elevator in a safe stop state. Hydraulic-electric hybrid drive traction elevator energy-saving principle can reduce energy consumption, at the same time, it can also give consideration to safety, which is more important for the operation of the elevator. The new principle can ensure that the elevator fails in all electrical control. The main research contents of this paper are as follows: Chapter 1 firstly introduces the development status, development trend and energy consumption of elevators in China, then summarizes the development history and classification of elevators, with emphasis on the development of energy-saving technology of traction elevators. Finally, based on the above comprehensive analysis, the research significance and main research contents of this subject are put forward. Chapter 2 introduces the working characteristics of ordinary elevators, analyzes the basic structure of traction elevators and the working characteristics of elevators in typical four quadrants. The dynamic model of the elevator is established and analyzed in detail. The dynamic model of the elevator is simulated and analyzed. The torque of the elevator under different loads and different working conditions is obtained when the counterweight of the elevator is different. A new energy-saving hydraulic-electric hybrid traction elevator is proposed. The principle and characteristics of the energy-saving elevator are analyzed. Finally, the tractor and hydraulic components are selected and the control system of the energy-efficient traction elevator is designed. In the third chapter, the mathematical model of the energy-saving elevator system is established, mainly for synchronous tractor, hydraulic pump/motor, accumulator and so on. The characteristics and operation characteristics of the elevator are analyzed and its mathematical model is established. The speed curve is analyzed and calculated, and the speed and acceleration curve is simulated. The purpose of this project is to reduce the energy consumption of the elevator system. Therefore, it is necessary to analyze the energy consumption of the ordinary traction elevator to understand the change of the energy consumption of the elevator in the process of the elevator operation. In this chapter, the general traction elevator model is established by simulation software. The energy consumption of the elevator under different operating conditions is simulated and analyzed. In the fourth chapter, the simulation model of the high energy efficiency traction elevator is established, and the operation of the elevator under different weights is simulated and analyzed. In the case of light load, light load, heavy load and heavy load, respectively, the energy consumption changes of the ordinary elevator and the energy-saving elevator are simulated and analyzed. The energy-saving efficiency of the energy-saving elevator is obtained by comparing and calculating. In the fifth chapter, based on the above theoretical research and simulation analysis, through the detailed analysis and parameter optimization of the energy-saving elevator system and structure, the test components and test scheme of the energy-saving elevator are determined, and the energy consumption test bench of the energy-efficient traction elevator is built. The energy consumption of the energy-saving system under different loads and operating distances is tested and compared with the simulation results. Then the energy-saving system and the tractor drive shaft are combined to conduct a comprehensive test. The mechanical operation efficiency of the energy-saving system is obtained through the comparison and analysis between the ground no-load test and the floor no-load test. The energy consumption of the elevator under different operating conditions is tested and analyzed, and the energy consumption of the elevator is compared with that of the ordinary elevator. The energy efficiency of the elevator is obtained. The research work done in this paper shows that the new principle and method of energy-saving of the traction elevator driven by liquid-electric mixture is correct and successful. It not only has better energy-saving effect, but also can effectively improve the safety and reliability of the traction elevator, and basically achieve the desired goal. The research results of this paper are not only energy-saving of the traction elevator. It is also one of the developing directions, and has a good application prospect in other vertical lifting machines.
【学位授予单位】:太原理工大学
【学位级别】:博士
【学位授予年份】:2015
【分类号】:TU857

【参考文献】

相关期刊论文 前10条

1 陈国庆;;矿井提升机能量回馈节能技术应用的研究[J];煤炭技术;2012年06期

2 彭继慎;王伟伟;宋立业;;一种新型的电梯能量回馈并网系统[J];计算机系统应用;2012年03期

3 杨欣;;利用飞轮储能的能量回收型液压升降系统研究[J];液压与气动;2012年03期

4 赵建勇;许林荣;沈煜;;基于备用电池的电梯节能系统研究[J];能源工程;2011年05期

5 阮学云;侯波;李琼;;升降机势能回收液压系统分析[J];液压与气动;2009年04期

6 张家胜;倪新昌;努尔泰;;电梯节能及能源再生技术[J];起重运输机械;2009年03期

7 张大欢;;节能型升降机液压系统改进设计[J];煤矿机械;2009年02期

8 尹政;;能量回馈器在电梯上的应用[J];科技信息(学术研究);2007年16期

9 张维刚;谭_g;朱小林;;液压技术在混合动力汽车节能方面的应用[J];机床与液压;2006年06期

10 侯波;;液压升降机能量回收系统设计[J];液压与气动;2006年03期



本文编号:2212394

资料下载
论文发表

本文链接:https://www.wllwen.com/jingjilunwen/jianzhujingjilunwen/2212394.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户42e02***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com