PVA-ECC钢筋网外包RC梁抗剪试验研究
[Abstract]:With the development of modern construction technology in our country, the reinforcement technology of concrete structure has developed rapidly and accumulated rich practical experience. People pay more and more attention to the later use of the building structure on the premise that the building structure is safe and reliable after the reinforcement and transformation. Durability and economy. The superiority of reinforced concrete structure strengthened with PVA-ECC steel mesh has been fully demonstrated by this experimental study. It is hoped that this reinforcement method can be more applied to practical engineering. PVA-ECC is a kind of cement matrix composite material, and the doped PVA is a kind of fiber with high strength and high elasticity. The cracks of PVA-ECC show a "fine and many" phenomenon. In addition, PVA-ECC also has good durability and resistance to the alternating action of temperature and humidity. At present, the main problem of this reinforcement method is that its construction cost is high, the price of PVA fiber itself is more expensive, and with the development of social economy, It is believed that this reinforcement method will be applied more widely. The essence of PVA-ECC reinforcement mesh outlay reinforced concrete structure method is as follows: firstly, the surface of the original structure is treated with hair-cutting and a certain number of shear pins. In order to strengthen the interfacial bond strength between the PVA-ECC reinforcement layer and the original member, it can work together with the original member and coordinate the deformation. Then, according to the designed steel bar category, diameter and spacing, the steel mesh skeleton is bound on the processed structural interface. Finally, the design strength of PVA-ECC, can be reached by directly smearing or pouring a thin layer of PVA-ECC, with a simple template for a specified time of curing. In this method, PVA-ECC not only has high compressive and tensile strength to resist the load, but also can be used as the protective layer of the original structure. As the main force member, the steel mesh skeleton can also form an effective clamping effect on the original structure and restrain the development of the oblique crack of the original structure effectively. The reinforcement method is simple, reliable and suitable for most structural members. Four reinforced concrete beams with cantilever were designed and manufactured in this experiment. Among them, 2 original contrast beams and 2 reinforced concrete beams strengthened by PVA-ECC steel mesh were strengthened around four sides. According to the different shear span ratio, the specimens are divided into two groups. The deflection of the two groups of specimens at the support and two concentrated force points, the stirrups strain of the original beam, the strain of the reinforcement stirrups, the strain of the concrete of the original beam and the strain of the composite mortar layer of the strengthened beam are measured. Based on the analysis of the experimental results with the development of oblique cracks and failure patterns, the variation of shear bearing capacity of strengthened beams with different shear span ratio and other factors affecting the shear bearing capacity of strengthened beams are obtained. The results show that the cross-section stiffness and shear bearing capacity of the strengthened beams are higher than those of the contrast beams, and the larger the shear span ratio is, the greater the range is. The configuration of stirrups strengthened by test beams and the strength grade of reinforced composite mortar layer are the main factors affecting its shear bearing capacity. In order to facilitate the direct application of engineering construction and design personnel, according to the principle of truss-arch model, the calculation formula of shear bearing capacity of strengthened beam theory is given. By comparison, it is found that the calculated value of the formula is in good agreement with the experimental characteristic load value. Finally, four test beams are simulated and calculated by nonlinear finite element analysis software ANSYS. The simulation results are in good agreement with the experimental results and phenomena, which further verify the effectiveness of the reinforcement method.
【学位授予单位】:湖南大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:TU375.1
【相似文献】
相关期刊论文 前10条
1 沈华光;钢筋的腐蚀及其预防[J];施工技术;1983年02期
2 唐永祥;;关于进口钢筋的应用问题[J];建筑技术;1988年02期
3 纪贵;钢筋标准与使用[J];冶金标准化与质量;2000年04期
4 魏仲文,赵高荣,贺慧芳;浅谈冷轧扭钢筋的应用[J];西山科技;2001年02期
5 李一平;关于应用冷加工钢筋的几个技术问题[J];安徽建筑;2002年01期
6 赵晖;吴晓明;刘冠国;黄丽;;钢筋混凝土保护层厚度检测精度的影响因素[J];无损检测;2009年07期
7 梁绍平;;钢筋巧加工[J];建筑工人;2010年04期
8 沈丽;孙晓东;;谈钢筋的检测及注意事项[J];民营科技;2010年10期
9 魏泽隆;;钢筋计算器[J];建筑工人;1980年04期
10 傅钟漧;;怎样进行钢筋等强代换?[J];建筑工人;1981年02期
相关会议论文 前10条
1 范孝鹏;梁爽;;论高效钢筋的应用[A];土木建筑学术文库(第9卷)[C];2008年
2 侯达远;;构件中混合使用不同种类钢筋的再认识[A];山东土木建筑学会建筑结构专业委员会2008年学术年会论文集[C];2008年
3 ;格尔木市住房和城乡建设局开展建筑工地场外加工钢筋专项检查工作[A];2011中国钢筋加工配送产业发展研讨会资料汇编[C];2011年
4 李会杰;谢剑;;超低温环境下钢筋与混凝土的粘结性能[A];第19届全国结构工程学术会议论文集(第Ⅱ册)[C];2010年
5 高艳芹;李娜;;浅谈钢筋原材料的检测[A];2014年3月建筑科技与管理学术交流会论文集[C];2014年
6 ;住房城乡建设部下发通知要求加强建筑工程使用钢筋质量管理[A];防水工程与材料《会讯》第4、5期(总123、124)[C];2011年
7 任玉辉;张欢;;耐腐蚀钢筋发展趋势及推广思考[A];纪念《金属制品》创刊40周年暨2012年金属制品行业技术信息交流会论文集[C];2012年
8 裴智;王润晓;李长君;王友权;;建筑钢材更新换代的HRB400MPa新Ⅲ级钢筋[A];山东建筑学会成立50周年优秀论文集[C];2003年
9 张全旭;郝东妮;;钢筋检测的可视化时代[A];第十届全国建设工程无损检测技术学术会议论文集[C];2008年
10 唐瑞瑞;谢福娣;刘栋栋;;高温后钢筋与混凝土粘结性能研究[A];第四届全国建筑结构技术交流会论文集(下)[C];2013年
相关重要报纸文章 前7条
1 驻青海记者 刘延军 通讯员 汪秀;格尔木对建筑工地钢筋进行专项检查[N];中华建筑报;2009年
2 记者 周晓方;我市一年来未发现“瘦身”钢筋[N];无锡日报;2010年
3 记者 郭立;重庆现“瘦身钢筋”,威胁建筑安全[N];新华每日电讯;2010年
4 特约记者 王纪洪;江西严查在建工程钢筋质量[N];建筑时报;2011年
5 山东省建筑设计研究院研究员总工程师 裴智 山东省建筑设计研究院研究员副总工程师 胡国治 山东省建筑设计研究院研究员 葛关金;建筑钢材更新换代的标志[N];市场报;2000年
6 记者 陈园园;加强建筑工程使用钢筋质量管理[N];中国建设报;2011年
7 阮国海;住宅工程施工裂缝产生原因及控制防治[N];建筑时报;2006年
相关博士学位论文 前4条
1 倪国葳;地震损伤钢筋混凝土构件修复加固试验及数值模拟[D];天津大学;2014年
2 杨树桐;基于断裂力学的钢筋、FRP与混凝土界面力学特性研究[D];大连理工大学;2008年
3 张娟霞;混凝土结构破坏机理的数值试验研究[D];东北大学;2006年
4 冯秀峰;混合配筋部分预应力混凝土梁疲劳性能研究[D];大连理工大学;2006年
相关硕士学位论文 前10条
1 张爽;转毂式钢筋矫直机的矫直过程模拟及参数研究[D];燕山大学;2015年
2 陈晨;600MPa级钢筋混凝土构件受力性能试验研究[D];昆明理工大学;2016年
3 王彭生;新型微纳米陶瓷涂层钢筋的制备及关键性能研究[D];东南大学;2016年
4 朱峰;风机基础环开孔钢板抗剪试验研究[D];湖南科技大学;2016年
5 高蒙;配置局部起波钢筋的混凝土梁受力性能试验研究[D];东南大学;2016年
6 段文锋;PVA-ECC钢筋网外包RC梁抗剪试验研究[D];湖南大学;2015年
7 郑江峰;考虑屈曲的钢筋滞回性能试验研究[D];重庆大学;2012年
8 徐茂辉;混凝土中钢筋检测的探地雷达方法[D];汕头大学;2004年
9 陈强;钢筋混凝土粘结性能和梁裂缝的数值模拟[D];浙江大学;2011年
10 曾令军;高温对钢筋混凝土性能及管片承载能力的影响研究[D];同济大学;2006年
,本文编号:2373851
本文链接:https://www.wllwen.com/jingjilunwen/jianzhujingjilunwen/2373851.html