哈尔滨市房地产市场预警研究
发布时间:2018-04-01 19:00
本文选题:房地产市场 切入点:预警 出处:《哈尔滨工业大学》2014年硕士论文
【摘要】:房地产业作为国民经济支柱产业,其异常的波动会给经济发展带来不利的影响。哈尔滨作为典型的二线城市,其房地产市场有着自身的特征。哈尔滨房地产市场起步较晚,至今虽然未发生过剧烈波动,,但是仍存在着问题和挑战。基于这种情况,建立房地产行市场预警模型,对市场异常进行合理调控是非常必要的。本文在对哈尔滨房地产市场进行预警研究时,选取粗糙集理论作为研究主线,灰色模型作为预测模型,相似度为评价标准,研究出适合于哈尔滨房地产市场的预警模型。 本文通过对哈尔滨房地产市场的分析,认为哈尔滨房地产市场总体来说发展良好,但是仍存在房价较人均收入太高,商品房空置严重,房地产开发融资渠道狭窄等问题。结合这些问题,本文从房地产市场健康发展的目标出发,在房地产与社会经济的协调性、房地产市场供求关系、房地产业自身的发展情况三个方面选取了10个预警指标。 本文利用粗糙集属性约简的思想确定指标的重要等级,并且组合粗糙集代数观和信息观权重得到优化后的预警指标权重,结合指标重要等级的划分确定权重的合理性。预警最重要的是需要对未来情况做出预测,本文提出自调整新陈代谢灰色模型对预警指标数据信息进行预测,并通过与传统新陈代谢灰色模型算法计算结果对比验证了本文提出的预测模型更为精确。而对于未来待评价年份的房地产市场的风险状态的判断则是通过相似度计算寻找历史相似年份,找出最相似的状态,即为待评价年份的状态。 基于1999-2013年哈尔滨市房地产市场的相关数据,本文利用所构建的房地产市场预警模型,借助Matlab软件获得计算结果,得出哈尔滨房地产市场在2014年将有转冷的趋势。对重点预警指标的分析得出哈尔滨房地产市场在2014年房地产投资与固定资产投资比可能会突破历史最低记录,房地产开发贷款延续近几年下降的趋势,商品房空置与竣工面积比则继续走高,需要引起重视。综合上述分析结果,本文最后提出了哈尔滨市房地产市场后续发展的建议。
[Abstract]:As a pillar industry of national economy, the abnormal fluctuation of real estate industry will bring adverse effects to economic development.Harbin as a typical second-line city, its real estate market has its own characteristics.Harbin real estate market started late, although has not had the violent fluctuation, but still has the question and the challenge.Based on this situation, it is necessary to establish a real estate market early warning model and to regulate the market anomalies reasonably.In this paper, we select rough set theory as the main line of study, grey model as prediction model, similarity as evaluation standard, and study the early warning model suitable for Harbin real estate market.Based on the analysis of Harbin real estate market, this paper thinks that Harbin real estate market is developing well, but there are still some problems such as higher house price than per capita income, serious vacancy of commercial housing and narrow financing channels for real estate development.Combined with these problems, this paper selects 10 early warning indexes from the aim of healthy development of real estate market, including the coordination of real estate and social economy, the relationship between supply and demand of real estate market, and the development of real estate industry itself.In this paper, we use the idea of attribute reduction in rough set to determine the important grade of index, and combine the weight of algebra and information of rough set to get the weight of pre-warning index after optimization, and determine the rationality of weight combining with the division of important grade of index.The most important thing in early warning is to predict the future situation. In this paper, the grey model of self-adjusting metabolism is proposed to predict the early warning index data.Compared with the calculation results of the traditional metabolism grey model, the prediction model proposed in this paper is more accurate.The judgment of the risk state of the real estate market in the years to be evaluated in the future is to find out the most similar year by similarity calculation, that is, the state of the year to be evaluated.Based on the relevant data of Harbin real estate market from 1999 to 2013, this paper makes use of the pre-warning model of real estate market, obtains the calculation result with Matlab software, and draws the conclusion that Harbin real estate market will turn cold in 2014.The analysis of key early warning indicators shows that the ratio of real estate investment to fixed asset investment in the Harbin real estate market in 2014 is likely to break through the lowest record in history, and real estate development loans continue to decline in recent years.Commercial housing vacancy and completion of the area ratio continues to go high, need attention.Synthesizing above analysis result, this article finally put forward the suggestion of Harbin real estate market follow-up development.
【学位授予单位】:哈尔滨工业大学
【学位级别】:硕士
【学位授予年份】:2014
【分类号】:F299.27
【参考文献】
相关期刊论文 前7条
1 雷振华;;房地产预警指标体系建立思考[J];财会通讯;2009年17期
2 杨佃辉;陈轶;屠梅曾;;基于聚类分析和非参数检验的房地产预警指标体系选择[J];东华大学学报(自然科学版);2006年02期
3 李斌;房地产市场预报预警系统建立过程中的误区及应注意的要点[J];中国房地产;2004年02期
4 丁烈云;房地产周期波动成因分析[J];华中科技大学学报(社会科学版);2003年02期
5 胡清华;于达仁;谢宗霞;;基于邻域粒化和粗糙逼近的数值属性约简[J];软件学报;2008年03期
6 崔啸;周克成;曹冬冰;李秀婷;吴迪;董纪昌;;北京市商品住宅系统动力学模型构建及其在预警中的应用[J];系统工程理论与实践;2011年04期
7 袁韶华;施松;汪应宏;刘勤侠;翟鸣元;;中国房地产市场调控效果分析及房地产健康发展的建议[J];现代城市研究;2014年02期
相关博士学位论文 前2条
1 赵军;基于GIS空间统计分析的区域房地产动态预警模型[D];中国地质大学(北京);2011年
2 崔立志;灰色预测技术及其应用研究[D];南京航空航天大学;2010年
本文编号:1696851
本文链接:https://www.wllwen.com/jingjilunwen/jingjiguanlilunwen/1696851.html