当前位置:主页 > 经济论文 > 经济管理论文 >

卷烟物流配送中心货物配装与配送路径优化研究

发布时间:2018-07-06 08:31

  本文选题:卷烟物流 + 货物配装 ; 参考:《重庆交通大学》2014年硕士论文


【摘要】:随着卷烟销量的不断提高,商业卷烟的发展进入一个全新的层面,物流配送活动作为卷烟发展的重要推动力量,其作用日益明显。在物流配送优化方面,国内外众多学者为提高物流配送效率、降低物流配送成本、提供更好的物流服务,深入研究了车辆装载问题(Vehicle Filling Problem, VFP)和车辆路径问题(Vehicle Routing Problem, VRP)。本文立足于卷烟物流配送角度,将货物配装与路径优化问题联系在一起,同时对卷烟配装与车辆路径问题进行优化,为此,论文将对以下几个方面的内容进行研究:(1)分析卷烟物流配送活动流程,尤其是卷烟配装以及送货过程,总结出本文配送优化主要内容;(2)建立适用于卷烟货物配装与车辆路径的共同优化模型;(3)设计改进遗传算法求出该模型的解;(4)在改进M卷烟物流配送中心配送车辆装载量的基础上对所设计的模型及算法进行实例验证。 具体地,论文首先对货物配装问题与车辆路径问题的国内外研究现状进行了概述,同时阐述了相关的物流配送优化的理论,并根据卷烟成品的货物特征选择二维的货物配装模型与非满载前提下的车辆路径模型进行优化整合。在分析得出卷烟成品属于弱差异型货物的结论的基础上,建立起了适合卷烟货物配装与车辆路径共同优化模型。对于已建立好的模型,使用改进的遗传算法进行求解,并借助于matlab软件,对算法进行了具体详尽的设计。然后,结合C市M卷烟物流配送中心的实际情况,在优化卷烟配送中心配送车辆装载量之后进行了相关的模型验算,并得到了较为满意的实验结果。研究证明,针对卷烟物流货物配装和车辆路径共同优化问题,该方法有效可行,对卷烟物流配送活动优化具有实际意义。
[Abstract]:With the continuous improvement of cigarette sales, the development of commercial cigarettes has entered a new level. As an important driving force of cigarette development, the role of logistics distribution is increasingly obvious. In the aspect of logistics distribution optimization, in order to improve the efficiency of logistics distribution, reduce the cost of logistics distribution and provide better logistics service, many scholars at home and abroad have deeply studied vehicle loading problem (VFP) and vehicle routing problem (VRP). In this paper, based on the perspective of cigarette logistics distribution, the problem of cargo loading and route optimization is connected, and the problem of cigarette matching and vehicle routing is optimized. This paper will study the following aspects: (1) analyze the flow of cigarette logistics distribution activities, especially cigarette matching and delivery process, summarize the main content of the distribution optimization; (2) establishing a common optimization model for cigarette cargo loading and vehicle routing, (3) designing an improved genetic algorithm to find the solution of the model; (4) on the basis of improving the loading capacity of distribution vehicles in M cigarette logistics distribution center, the designed model and algorithm are verified by an example. Specifically, the paper first summarizes the domestic and foreign research status of cargo loading problem and vehicle routing problem, and at the same time expounds the theory of logistics distribution optimization. According to the characteristics of the finished cigarette goods, the two-dimensional cargo loading model and the vehicle routing model under the condition of non-full load are selected to optimize and integrate. On the basis of analyzing the conclusion that cigarette finished products belong to weakly differential type goods, a suitable model for cigarette cargo matching and vehicle routing optimization is established. For the established model, the improved genetic algorithm is used to solve the problem, and the algorithm is designed in detail with the help of matlab software. Then, combined with the actual situation of M cigarette logistics distribution center in C city, after optimizing the loading capacity of the distribution vehicle in the distribution center of cigarette distribution center, the relevant model checking calculation was carried out, and the satisfactory experimental results were obtained. It is proved that this method is effective and feasible for the joint optimization of cigarette logistics cargo loading and vehicle routing, and has practical significance for the optimization of cigarette logistics distribution activities.
【学位授予单位】:重庆交通大学
【学位级别】:硕士
【学位授予年份】:2014
【分类号】:F426.8;F252

【参考文献】

相关期刊论文 前5条

1 杨传民,杨涛,陈少为;立方体包装件混装集装离散优化(一)[J];包装工程;2000年02期

2 孙焰,李致中;求双目标配装方案的多项式近似算法[J];长沙铁道学院学报;1997年02期

3 刘小群,马士华,徐天亮;装载能力有限下多品种货物配装的容重比平衡法[J];工业工程与管理;2004年03期

4 黄晓光;;现代信息技术在卷烟物流的应用及其发展[J];电子技术与软件工程;2013年18期

5 宫佩珊;集装箱递阶优化装箱方法[J];青岛大学学报(工程技术版);1997年04期



本文编号:2102159

资料下载
论文发表

本文链接:https://www.wllwen.com/jingjilunwen/jingjiguanlilunwen/2102159.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户7ff78***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com