非对称金融资产波动预测与建模影响研究(塞拉利昂标准普尔500指数及汇率实证研究)
[Abstract]:Modeling and forecasting the returns and returns of financial assets is essential for capital market decision makers and participants to pursue the goal of maximizing profits and making accurate decisions. Although there have been relevant academic articles on the dynamic volatility of financial asset returns in the relevant literature, modeling and predicting the dynamic volatility of financial asset returns in financial mathematics, financial econometrics, financial economics, Application of statistics and economic growth can play a key role until now, is still an outstanding issue. Therefore, this paper discusses the modeling and forecasting of the dynamic volatility model of the daily yield of the S & P 500 stock index and the Sierra Leone monthly exchange rate return, which includes the autoregressive moving average model. Generalized autoregressive conditional heteroscedasticity model (GARCH), Taylor,Schwert generalized autoregressive conditional heteroscedasticity model (GARCH), Glosten, Jagannathan, Runkle GARCH model and asymmetric ARCH model with conditional normal distribution and t distribution. At the same time, this paper also discusses the unit root test and error correction model proposed by Dickey-Fuller, Phillip-Perron in detail. At the same time, the uniform convergence, strong consistency and asymptotic normality of stationary APARCH (p) model are proved under the condition of simple order constraint. At the same time, the analytic score expression of APARCH model is derived. The related properties of GARCH model are derived by using maximum likelihood estimation. Using the daily S & P 500 return data for the period from 1 January 2002 to 31 December 2012 and the Sierra Leone monthly exchange rate gains data from 1 January 1991 to 31 December 2013 to fit the model mentioned above, The results show that the APARCH model with heavy-tailed t distribution is the most effective and successful prediction model and can successfully predict the daily stock index return series. The GJR-GARCH model under the heavy-tailed t distribution can best predict the monthly exchange rate return order in Sierra Leone. The result of error correction shows that if the long-term equilibrium deviates, the effect of restoring equilibrium can be achieved by adjusting the imbalance between the Japanese stock index and the monthly exchange rate. Finally, it is shown that the proposed model can successfully model the daily 500 stock index and the Sierra Leone monthly exchange rate fluctuation. At the same time, because of the existence of leverage effect, the asymmetric GARCH model shows an asymmetric return sequence. Under the abnormal distribution, asymmetric (GARCH) and GARCH models can better estimate the conditional variance of the whole quasi combined lifting system. In view of the actual implications of stock index and exchange rate fluctuations, the study will apply to capital market decision makers, investors and industry researchers in the practice of the economic industry. Emerging risk management and foreign exchange market volatility and other areas play a vital role.
【学位授予单位】:大连理工大学
【学位级别】:博士
【学位授予年份】:2015
【分类号】:F830;F224
【相似文献】
相关期刊论文 前10条
1 Bai-min YU;;Two Efficient Parameterized Boundaries for Ve酓e峁's Asian Option Pricing PDE[J];Acta Mathematicae Applicatae Sinica(English Series);2012年04期
2 ;PRICING EUROPEAN OPTION IN A DOUBLE EXPONENTIAL JUMP-DIFFUSION MODEL WITH TWO MARKET STRUCTURE RISKS AND ITS COMPARISONS[J];Applied Mathematics:A Journal of Chinese Universities(Series B);2007年02期
3 ZHOU Pu;LU Fengbin;WANG Shouyang;;TESTING LINEAR AND NONLINEAR GRANGER CAUSALITY IN CSI300 FUTURES AND SPOT MARKETS BASED ON NEW CONCEPTS OF NONLINEAR POSITIVE/NEGATIVE SPILLOVER[J];Journal of Systems Science & Complexity;2014年04期
4 ;Forecasting China′s Stock Market Volatility Using Non-Linear GARCH Models[J];Journal of Systems Science and Systems Engineering;2000年04期
5 庞素琳;邓飞其;王燕鸣;;A COMPARISON OF FORECASTING MODELS OF THE VOLATILITY IN SHENZHEN STOCK MARKET[J];Acta Mathematica Scientia;2007年01期
6 GONCALVES Carlos Pedro;;QUANTUM FINANCIAL ECONOMICS——RISK AND RETURNS[J];Journal of Systems Science & Complexity;2013年02期
7 胡耀忠;MULTI-DIMENSIONAL GEOMETRIC BROWNIANMOTIONS, ONSAGER-MACHLUP FUNCTIONS, AND APPLICATIONS TO MATHEMATICAL FINANCE[J];Acta Mathematica Scientia;2000年03期
8 ;Rise and Fall of the First Financial Futures Market in China: The Case of Chinese Government Bond Futures[J];China & World Economy;2009年02期
9 CHEN Xiu-fang;;GARCH-GED Model Based-AGA for Financial Risk Measure[J];科技视界;2013年24期
10 Tobias LIPP;Gr忮goire LOEPER;Olivier PIRONNEAU;;Mixing Monte-Carlo and Partial Differential Equations for Pricing Options[J];Chinese Annals of Mathematics(Series B);2013年02期
相关会议论文 前7条
1 ;The Research on the Stock Price Volatility of Chinese Growth Enterprise Market[A];Proceedings of the 2011 Chinese Control and Decision Conference(CCDC)[C];2011年
2 ;Stock Market Volatility and Earnings Management:A Regional Perspective[A];第五届(2010)中国管理学年会——会计与财务分会场论文集[C];2010年
3 ;Crystal growth of CsB_3O_5 from NaF flux[A];第14届全国晶体生长与材料学术会议论文集[C];2006年
4 ;Multiresolution Wavelet Analysis Based Volatility Character of High Frequency SIGNAL[A];Proceedings of the Second Conference on Fuzzy Information & Engineering[C];2005年
5 ;Systemic Jump in Chinese Stock Market[A];第八届中国不确定系统年会论文集[C];2010年
6 Greg Clinch;Donald Stokes;;Audit Quality and Information Asymmetry between Traders[A];中国会计学会第八届全国会计信息化年会论文集[C];2009年
7 应益荣;宫模恒;;Overconfidence:Expansion of the DHS Model in Futures Market[A];第二届中国智能计算大会论文集[C];2008年
相关博士学位论文 前3条
1 Milton Abdul Thorlie;非对称金融资产波动预测与建模影响研究(塞拉利昂标准普尔500指数及汇率实证研究)[D];大连理工大学;2015年
2 Muhammad Altaf;[D];中国科学技术大学;2015年
3 邱天;金融动力学唯象分析和模型研究[D];浙江大学;2006年
相关硕士学位论文 前3条
1 Nicola FERRARI;[D];复旦大学;2009年
2 袁臻;波动率预测模型与比较[D];上海交通大学;2013年
3 孔涛;现金股利,,投资者偏好及市场稳定性[D];上海交通大学;2012年
本文编号:2326993
本文链接:https://www.wllwen.com/jingjilunwen/jingjiguanlilunwen/2326993.html