当前位置:主页 > 经济论文 > 股票论文 >

基于RS-LS-SVM的股票市场预测模型研究

发布时间:2018-12-29 16:53
【摘要】:支持向量机作为一种常见的数据挖掘方法,相对其他方法来说具有十分突出的优点,目前在各个领域的应用也十分广泛。但是,该方法在实际运用中还有许多问题值得研究,模型本身也有很多可以改进的地方。为了进一步地改进支持向量机模型并对其进行推广,本文选取了目前研究较多,但对支持向量机方法的运用上还存在问题的资本市场作为研究对象。本文针对目前的股市预测方法以及标准支持向量机存在的缺陷进行了分析,在此基础上提出了结合粗糙集的最小二乘支持向量机模型对股市进行预测,首先应用粗糙集对预测指标进行属性约简,然后对约简的指标体系使用最小二乘支持向量机来预测股价的波动情况,以期能够给股市预测提供一定的参考,并对粗糙集与最小二乘支持向量机的应用提供思路与方法。本文的主要研究内容为:首先系统地介绍了关于股票市场预测、支持向量机、最小二乘支持向量机和粗糙集的国内外研究现状,并在前人研究的基础上总结了现有方法的不足,鉴于现有方法的不足,提出RS-LS-LSVM股市预测方法;其次对粗糙集和最小二乘支持向量机的基础理论以及模型中涉及的核函数的选择问题进行了说明;随后根据模型的整体思路建立了模型的流程图,详细描述了该预测模型的处理过程,并建立了一套包括今日最高价、昨日最高价、前日最高价、7日平均最高价等在内的27个指标构成的预测指标体系,并对模型中各个步骤的处理过程与方法进行了一一说明;最后在主板、中小板、创业板中随机选取了中国石油(601857)、辉隆股份(002556)和劲胜精密(300083)的2016年全年的交易数据作为研究样本,每个样本都是244组数据,在MATLAB软件中进行了三次三组模型的对比实验,每次对比实验又进行了20次的随机试验,在软件中分别使用RS-LS-SVM、LS-SVM和RS-SVM对样本数据回归预测,并对结果进行了对比。实验结果表明:一、实验针对三个样本得到了三个不同的约简指标体系,说明相同的指标在针对不同的预测对象时,有效指标不同;相同的指标对不同的预测对象的应用上也存在区别。所以预测之前进行指标筛选和属性约简是十分必要的,属性约简可以减少数据冗余,提高预测性能,并且本文提出的初选指标体系能够在一定程度上对我国股市进行预测。二、实验结果验证了RS-LS-SVM预测模型的可行性和有效性。无论是在主板、中小板还是在创业板中,多次实验结果表明,在MSE和RMSE两个数据上表现,RS-LS-SVM预测模型都比LS-SVM和RS-SVM模型更为优秀。可以看出,将粗糙集与最小二乘支持向量机引入股票市场中,简化了模型难度,提高了求解速度,具有一定的创新性,这对于股票市场预测模型的研究和投资者进行投资决策具有参考价值。
[Abstract]:As a common data mining method, support vector machine (SVM) has many advantages compared with other methods, and it is widely used in various fields. However, there are still many problems worth studying in practical application, and the model itself can be improved. In order to further improve the support vector machine (SVM) model and generalize it, this paper selects the capital market which has some problems in the application of support vector machine (SVM). Based on the analysis of the current stock market forecasting methods and the defects of the standard support vector machine (SVM), a rough set least squares support vector machine (LS-SVM) model is proposed to predict the stock market. First, the rough set is used to reduce the attribute of the prediction index, and then the least square support vector machine is used to predict the fluctuation of stock price in the index system of the reduction, so as to provide a certain reference for the stock market forecast. It also provides ideas and methods for the application of rough set and least squares support vector machine. The main contents of this paper are as follows: firstly, this paper systematically introduces the research status of stock market prediction, support vector machine, least square support vector machine and rough set, and summarizes the shortcomings of existing methods on the basis of previous studies. In view of the shortcomings of the existing methods, the RS-LS-LSVM stock market forecasting method is put forward. Secondly, the basic theory of rough set and least squares support vector machine (LS-SVM) and the selection of kernel function in the model are explained. Then, according to the overall idea of the model, the flow chart of the model is established, the processing process of the prediction model is described in detail, and a set of prices including the highest price today, the highest price yesterday, the highest price the day before yesterday, The prediction index system is composed of 27 indexes including the highest price of 7 days, and the processing process and method of each step in the model are explained one by one. Finally, in the main board, the small and medium-sized board, and the gem, the transaction data of PetroChina (601857), Huilong shares (002556) and Jinsheng Precision (300083) for the whole year 2016 were randomly selected as the research samples. Each sample was 244sets of data. The contrast experiments of three groups of models were carried out in MATLAB software, and 20 random experiments were carried out each time. In the software, RS-LS-SVM,LS-SVM and RS-SVM were used to predict the sample data respectively. The results are compared. The experimental results show that: first, three different reduction index systems are obtained for the three samples, which shows that the same index is different for different prediction objects; There are differences in the application of the same indicators to different prediction objects. Therefore, it is very necessary to carry out index selection and attribute reduction before prediction. Attribute reduction can reduce data redundancy and improve prediction performance, and the primary index system proposed in this paper can predict the stock market in China to a certain extent. Second, the experimental results verify the feasibility and validity of the RS-LS-SVM prediction model. The results of many experiments on the main board, the small and medium-sized board and the growth enterprise board show that the RS-LS-SVM prediction model is better than the LS-SVM and RS-SVM model in the data of MSE and RMSE. It can be seen that introducing rough set and least squares support vector machine into stock market simplifies the difficulty of the model and improves the speed of solution. It has reference value for the research of stock market forecasting model and investors' investment decision.
【学位授予单位】:成都理工大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:F832.51

【参考文献】

相关期刊论文 前10条

1 蔡欢;;基于遗传算法和LS-SVM的财务危机预测[J];统计与决策;2017年02期

2 王卫红;卓鹏宇;;基于PCA-FOA-SVR的股票价格预测研究[J];浙江工业大学学报;2016年04期

3 彭灿;李群善;刘浩忠;;高海拔地区隧道总造价预测——基于粗糙集-支持向量机模型[J];黑龙江交通科技;2016年08期

4 李奋华;赵润林;;一种基于时间序列分析的股票走势预测模型[J];现代计算机(专业版);2016年20期

5 张清华;胡荣德;姚龙洋;谢万成;;基于属性重要度的风险决策粗糙集属性约简[J];控制与决策;2016年07期

6 梁挺;孙金金;;技术投资方法在股票实战中的应用分析[J];商业经济;2016年04期

7 黄诗蕴;;基于支持向量机的上市公司投资回报预测[J];环球市场信息导报;2015年47期

8 唐卫国;张涛;罗奕;徐晋勇;;粗糙集属性约简算法综述[J];大众科技;2015年11期

9 陈优阔;杨永国;张鑫;张辉;;基于粗糙集及最小二乘支持向量机的煤层厚度预测[J];地球物理学进展;2015年05期

10 李曼;;股票价格的影响因素分析[J];中国集体经济;2015年25期

相关博士学位论文 前3条

1 郭新辰;最小二乘支持向量机算法及应用研究[D];吉林大学;2008年

2 周观君;基于量价分析的中国股票市场价格行为研究[D];首都经济贸易大学;2005年

3 崔广才;基于粗糙集的数据挖掘方法研究[D];吉林大学;2004年

相关硕士学位论文 前10条

1 陈绵旺;基于RS-SVM的商品住宅价格预测研究[D];华东交通大学;2016年

2 韩莉;基于LM-BP神经网络股票预测研究[D];东北农业大学;2016年

3 金津辉;粗糙集属性约简研究[D];安徽工业大学;2016年

4 朱磊;基于支持向量机的股价预测研究[D];重庆工商大学;2016年

5 孙瑞奇;基于LSTM神经网络的美股股指价格趋势预测模型的研究[D];首都经济贸易大学;2016年

6 史媛慧;基于粗糙集的股价趋势预测研究[D];河北科技大学;2015年

7 王琼瑶;基于改进的支持向量机技术在股票短期价格预测中的应用[D];重庆交通大学;2015年

8 陈安辉;基于GA-ANFIS的股指预测研究[D];哈尔滨工业大学;2015年

9 范涛;基于优化算法的股票预测研究[D];湖北工业大学;2015年

10 万岑;基于支持向量机的中国股票价格研究[D];山东师范大学;2015年



本文编号:2395095

资料下载
论文发表

本文链接:https://www.wllwen.com/jingjilunwen/jinrongzhengquanlunwen/2395095.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户62004***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com