基于多目标遗传算法的铁矿石码头泊位调度研究
[Abstract]:Since 2003, China has been the largest import country of iron ore in the world. The long-term large quantity transportation requirements have promoted the development of the specialized logistics chain of iron ore in China, and the coastal ports have accelerated the construction of specialized iron ore wharves. Still can not meet the needs of economic development and iron and steel industry. Therefore, it is of great significance to utilize only the existing resources of the port, not to increase the facilities and equipments of the port, but to optimize the resources, speed up the loading and unloading of ships, improve the utilization ratio of port equipment and reduce the cost of port operation. The thesis takes the berth scheduling of iron ore terminal as the research object. Firstly, from the reality that our country is the largest iron ore importer in the world, this paper analyzes the gap between the iron ore port's unloading capacity and the total import quantity, and draws the significance of the paper's research. According to the present situation of domestic and international research, the research contents and methods of this paper are put forward. Secondly, the related problems of berth scheduling of iron ore terminal are analyzed, the model to be established is simplified, the process of unloading iron ore ship is analyzed, and two optimization objective functions are determined. Considering that different ship types have different berthing fees, it is pointed out that many previous researches have taken the minimum time of ship in port as the target to determine the objective function of the minimum cost of ship in port. The second objective function is to minimize port operation cost. Thirdly, the related knowledge of genetic algorithm is summarized, the principle and flow of basic genetic algorithm are summarized in this paper, and the specific method of realizing multi-objective optimization by genetic algorithm is discussed. Finally, the implementation process of genetic algorithm for berth scheduling of iron ore terminal is designed. Based on the research of sorting problem in this paper, natural number coding is adopted; multi-objective optimization is realized by weight coefficient method; fitness function is obtained by converting objective function; selection operator adopts random selection without retractive residue, Using the two-point crossover method, the mutation operation is transposition mutation; select the relevant control parameters to deal with the constraints; finally, for a specific example, run the genetic algorithm to verify the effectiveness of the algorithm.
【学位授予单位】:武汉理工大学
【学位级别】:硕士
【学位授予年份】:2012
【分类号】:F252;F552;TP18
【参考文献】
相关期刊论文 前10条
1 韩骏;孙晓娜;靳志宏;;集装箱码头泊位与岸桥协调调度优化[J];大连海事大学学报;2008年02期
2 吕显强,张宏伟;集装箱码头分派车辆的整数规划模型[J];大连水产学院学报;2004年02期
3 刘丽景;;遗传算法与多Agent遗传算法操作与性能比较[J];电脑知识与技术;2011年16期
4 孟文君;杜麒栋;;我国铁矿石码头通过能力与需求分析[J];中国港口;2009年10期
5 袁礼海,宋建社,毕义明,薛文通;混合遗传算法及与标准遗传算法对比研究[J];计算机工程与应用;2003年12期
6 司晓悦,娄成武;从国际铁矿石涨价,看中国钢铁产业可持续发展[J];金属矿山;2005年05期
7 刘动;;近年我国进口铁矿石的现状与分析[J];金属矿山;2009年01期
8 杨春霞;王诺;;基于多目标遗传算法的集装箱码头泊位—岸桥分配问题研究[J];计算机应用研究;2010年05期
9 童珊;;基于船舶优先权的集装箱港口泊位分配问题[J];交通运输工程与信息学报;2012年01期
10 张佳运;卢刚;;集装箱码头连续泊位动态分配优化模型及算法[J];北方交通;2011年04期
相关博士学位论文 前1条
1 胡一波;求解约束优化问题的几种智能算法[D];西安电子科技大学;2009年
相关硕士学位论文 前10条
1 叶赛男;基于Multi-Agent 的港口调度系统研究[D];北京交通大学;2011年
2 陈欢;集装箱场桥调度及其仿真研究[D];武汉理工大学;2011年
3 候春霞;集装箱码头出口箱堆场空间分配研究[D];大连海事大学;2011年
4 张燕涛;基于遗传算法的泊位调度问题优化研究及仿真[D];武汉理工大学;2005年
5 魏玺杰;基于Agent的后方堆场机械调度模拟建模研究[D];大连海事大学;2007年
6 姚夏莉;矿石码头装卸工艺系统设备配置仿真优化[D];大连理工大学;2007年
7 黄鑫乐;基于遗传算法的铁矿石码头泊位配置仿真优化方法的应用研究[D];上海海事大学;2007年
8 代丽利;基于广义遗传算法的泊位分配问题优化研究[D];大连海事大学;2008年
9 石春玲;港口作业调度的算法设计与模型研究[D];山东科技大学;2008年
10 柴志刚;集装箱码头泊位调度多目标优化方法研究[D];大连海事大学;2009年
,本文编号:2125879
本文链接:https://www.wllwen.com/jingjilunwen/jtysjj/2125879.html