基于时序性信息的财务报表欺诈识别
[Abstract]:This paper starts with the research results in the field of financial fraud identification, and on the basis of analyzing the insufficiency of previous research, aiming at the deficiency, deeply explores, and puts forward some more effective solutions. Specifically, three aspects of work have been done in this paper in view of the two deficiencies of previous studies. Firstly, aiming at the deficiency of the traditional financial fraud identification model which can not catch the longitudinal annual anomaly of financial index, this paper abstracts this longitudinal anomaly into a time series index and adds it to the naive Bayes classification model, which improves the classification accuracy of the model. Among them, the difference value, the ratio, the relative value form time series index which is more effective, and the time series index between different years how to weigh reasonably are studied emphatically. The conclusion of the empirical study is that the time series index in the form of ratio is more effective, and the effect is better when the weight of 0.8 is assigned to the time series index of the recent year and the weight of 0.2 is assigned to the time series index of the farther year at the same time. Secondly, from the point of view of clustering, this paper verifies the validity of the ratio time series index constructed in the classification model, and also excavates the fraud characteristic that the ratio time series index can reflect. The conclusion of the empirical study is that when the financial fraud exists, the ratio forms derived from the return on net assets and earnings per share may be abnormal. Thirdly, aiming at the inherent deficiency of the traditional fraud identification model as a supervised learning algorithm-the selection and labeling of control samples is potentially irrational and redundant, the traditional model is modified based on the partially supervised learning algorithm. The conclusion of the empirical study is that the modified model can not only eliminate the interference of unreliable control samples, but also make full use of the information contained in fraud samples to identify fraud. The optimized model also has a better performance in identifying financial fraud.
【学位授予单位】:西南交通大学
【学位级别】:硕士
【学位授予年份】:2013
【分类号】:F234.4;F224
【参考文献】
相关期刊论文 前10条
1 蔡宁,梁丽珍;公司治理与财务舞弊关系的经验分析[J];财经理论与实践;2003年06期
2 刘桂良;叶宝松;周兰;;舞弊治理:基于上市公司财务舞弊特征的分析[J];财经理论与实践;2009年03期
3 张煜东;霍元铠;吴乐南;董正超;;降维技术与方法综述[J];四川兵工学报;2010年10期
4 梅国平;陈孝新;毛小兵;;基于主成分分析的企业会计信息失真预测模型[J];当代财经;2006年02期
5 程永文;;聚类分析在识别财务欺诈中的应用[J];合肥工业大学学报(自然科学版);2006年10期
6 蔡志岳;吴世农;;基于公司治理的信息披露舞弊预警研究[J];管理科学;2006年04期
7 余玉苗;吕凡;;财务舞弊风险的识别——基于财务指标增量信息的研究视角[J];经济评论;2010年04期
8 陈信元,张田余,陈冬华;预期股票收益的横截面多因素分析:来自中国证券市场的经验证据[J];金融研究;2001年06期
9 顾宁生;冯勤超;;基于LVQ神经网络的财务舞弊识别模型实证研究[J];价值工程;2009年10期
10 耿建新 ,肖泽忠 ,续芹;报表收益与现金流量数据之间关系的实证分析——信息不实公司的预警信号[J];会计研究;2002年12期
相关博士学位论文 前2条
1 任海松;上市公司财务报告欺诈及其侦测研究[D];东北财经大学;2006年
2 邓庆山;基于数据挖掘技术的上市公司会计信息失真识别研究[D];江西财经大学;2009年
相关硕士学位论文 前2条
1 陈凌;我国上市公司财务欺诈识别模型研究[D];中国人民大学;2005年
2 杨芳;上市公司财务欺诈识别[D];湖南大学;2006年
,本文编号:2391059
本文链接:https://www.wllwen.com/jingjilunwen/kuaiji/2391059.html