几类风险模型的首次通过时间及分红问题的研究
[Abstract]:In insurance mathematics, ruin theory is one of the most important issues in the study of insurance risk theory. It can provide a very useful early warning means for insurance company decision makers. Therefore, it is of great theoretical and practical significance to study it.
In this paper, the first passage time problem is considered for jump-diffusion processes by using the knowledge and theory of stochastic processes and stochastic differential equations. The ruin problem, the Gerber-Shiu function, and the problem of cash dividends and option pricing in the early stage of bankruptcy.
On the other hand, dividend strategy is also an important research issue in risk theory. "Dividend refers to the distribution of a company's (part) surplus as dividends to its owners or shareholders." Its practical significance makes the study of dividend strategy more concerned. For these beneficiaries, they are not only concerned about the company's current economic situation. What is more concerned about is what kind of dividend strategy can be adopted to make their earnings discounted at a certain discount rate as large as possible, that is, the so-called optimal dividend problem. According to different customer requirements, or under different dividend requirements, the optimal dividend strategy is naturally different. Now there are two commonly used strategies, one is the obstacle dividend. The other is the threshold dividend policy, which has been proved to be optimal under the corresponding restrictions. These two dividend strategies are discussed in Chapter 2, Chapter 3 and Chapter 5.
The first chapter mainly introduces the research background of this paper, including the basic risk model, dividend strategy, and the basic knowledge of L'evy process.
In Chapter 2, the first passage time of a hyperexponential jump (diffusion) process to a horizontal boundary is studied. The explicit solutions of the Laplace transformation are obtained for the first passage time, the first passage time and the distribution of overshoot, the process and the maximum (minimum) or the joint distribution. The compound Poisson risk model with diffusion disturbance and its dual model are given. The exact expression of the dividend formula under barrier dividend strategy and threshold dividend strategy is given.
Chapter 3 investigates the optimal dividend problem when the uncontrolled earnings process of an insurance company is a spectrum-negative L'evy process. Assuming that the dividend is distributed to customers in a constant proportion, the threshold strategy is proved to be the optimal dividend strategy when the L'evy measure has a completely monotone density. (The results of this chapter have been published in Acta Mathemat.) ICAE Applicatae Sinica, English Series.)
In Chapter 4, we study the first passage time of constant bounds for mixed exponential jump-diffusion processes. We obtain the explicit solution of Laplace transformation of the first passage time, the first passage time and the undershoot (overshoot) distribution or the joint distribution. We also obtain the explicit expression of Gerber-Shiu function for the two-sided jump-diffusion processes, and give the path. Analytical solutions of dependent options, Laplacian transformations of recall and barrier options, closed expressions of zero-interest loans with jumps in structured credit risk models.
In the fifth chapter, we study the optimal dividend problem of generalized composite Poisson model (whose counting process is a generalized Poisson process) and discuss its properties with classical risk model and Po'lya-Aeppli risk model as examples. The optimal dividend policy under certain conditions is the threshold strategy.
【学位授予单位】:曲阜师范大学
【学位级别】:博士
【学位授予年份】:2014
【分类号】:F224;F840.31
【共引文献】
相关期刊论文 前10条
1 李适君;明瑞星;黄龙生;;门槛策略下双复合Poisson风险过程的Gerber-Shiu函数[J];江西师范大学学报(自然科学版);2011年01期
2 赵金娥;王贵红;龙瑶;崔向照;;线性红利下带干扰的复合Poisson风险模型[J];重庆理工大学学报(自然科学版);2010年03期
3 刘再明;李曼曼;张炜;;随机保费下带红利的期望贴现惩罚函数[J];系统工程;2008年07期
4 王后春;;两险种广义Erlang(2)风险模型的破产概率[J];工程数学学报;2013年05期
5 杨鹏;;边界分红策略下跳-扩散风险过程的最优投资[J];重庆师范大学学报(自然科学版);2013年06期
6 陈倩;何传江;;带常数界绝对破产时刻罚金折现函数期望[J];东北师大学报(自然科学版);2013年04期
7 Xiao Yun MO;Xiang Qun YANG;;Criterion of Semi-Markov Dependent Risk Model[J];Acta Mathematica Sinica(English Series);2014年07期
8 赵金娥;;常红利边界下带干扰的双复合Poisson风险模型[J];辽宁工程技术大学学报(自然科学版);2014年05期
9 李永;胡帅;王艳萍;;破产理论视角下的巨灾权益卖权定价[J];系统工程;2014年03期
10 杨文权;;带利率与红利边界的风险模型的破产概率的上界[J];湖北民族学院学报(自然科学版);2010年02期
相关会议论文 前1条
1 寇宗来;周敏;;机密还是专利?[A];经济学(季刊)第11卷第1期[C];2011年
相关博士学位论文 前10条
1 张目;高技术企业信用风险影响因素及评价方法研究[D];电子科技大学;2010年
2 汪刘根;含有跳违约风险的常弹性方差模型下的期权定价研究[D];浙江大学;2010年
3 胡祖辉;信用衍生产品定价模型及数值实现研究[D];华中科技大学;2011年
4 徐耸;随机微分方程在金融中的若干应用[D];华东师范大学;2011年
5 林爱红;多过程驱动的随机常微分方程几类终值与边值问题适应解性质的研究[D];华东理工大学;2011年
6 郁一彬;马氏环境或Copula相依下的精算模型[D];浙江大学;2011年
7 黄文礼;基于分数布朗运动模型的金融衍生品定价[D];浙江大学;2011年
8 耿维;考虑行为因素的周期性盘点库存系统运作研究[D];清华大学;2010年
9 王建国;审查回归(Censored Regression)模型的参数、半参数和非参数估计及一致性模型设定检验[D];中国社会科学院研究生院;2011年
10 高原;异质信念下信用违约互换定价研究[D];华中科技大学;2011年
相关硕士学位论文 前10条
1 吴辉;带红利策略的复合二项风险模型的红利及破产问题研究[D];湘潭大学;2010年
2 王文元;带税风险模型的研究[D];江西师范大学;2010年
3 陆金荣;可违约零息债券风险综合度量模型研究[D];浙江财经学院;2010年
4 赵飞;带有混杂分红的一类更新风险模型的破产问题[D];曲阜师范大学;2011年
5 范艳荣;风险模型中混杂分红策略的探究[D];曲阜师范大学;2011年
6 郑金川;基于风险偏好的供应链委托代理模型分析[D];复旦大学;2011年
7 李适君;门槛分红策略下带两类索赔风险过程模型的研究[D];江西师范大学;2011年
8 张又才;复合二项风险模型的红利策略[D];湘潭大学;2010年
9 王莹;带分红的复合Pascal模型及引文网模型的相关结果[D];南京航空航天大学;2009年
10 李友梁;股东大宗股权转让动因的实证研究[D];长沙理工大学;2011年
,本文编号:2220994
本文链接:https://www.wllwen.com/jingjilunwen/qihuoqq/2220994.html