当前位置:主页 > 经济论文 > 投融资论文 >

基于不同频率数据的波动率模型的研究

发布时间:2018-03-03 03:29

  本文选题:波动率 切入点:ARFIMA模型 出处:《湘潭大学》2014年硕士论文 论文类型:学位论文


【摘要】:股票市场形势复杂,变化多端,对其波动率的研究已经成为该领域的核心内容之一。我国沪深股票市场为新兴金融市场,自实施涨跌幅限制以来已趋于稳定,但市场体制还需进一步地完善。波动性是衡量股市质量和效率的重要指标,一定幅度的波动有利于活跃股市并使其持续发展,过于频繁且剧烈的波动反而会适得其反。因此,波动率的研究对于我国股市的规范以及投资者的理性判断具有重要意义。 本文以上海和深圳股市最具代表性的上证指数和深圳综指为研究对象,采用最新历史数据来分析我国近年股市波动情况。并选取了每只股票的日数据、5分钟数据和1分钟数据,对其建立两种均值模型和六种GARCH方差模型进行波动率的研究,得到两个结论: 1、最适合研究近年我国沪深股市收益波动率的均值模型为ARFIMA模型,方差模型为EGARCH模型。 2、不同频率的收益序列,其最优波动率模型不同,且频率越高,波动率模型的拟合效果和预测效果越好。本文1分钟数据的波动率模型的研究结果最理想。 原因有三: 1、随着我国股票市场体制的完善,逐渐趋于稳定,股市收益时间序列已经具备长记忆性。 2、ARFIMA-EGARCH模型综合考虑了我国股市收益序列的自回归异方差性、杠杆效应、长记忆性和风险对收益的影响。 3、数据频率越高,对股市信息反映的更全面,更利于波动率模型的拟合和预测。
[Abstract]:The situation of stock market is complex and changeable. The research on volatility has become one of the core contents in this field. China's stock market in Shanghai and Shenzhen is an emerging financial market, which has become stable since the implementation of the limit of price and decline. But the market system needs to be further improved. Volatility is an important index to measure the quality and efficiency of the stock market. A certain range of fluctuations is conducive to the active and sustainable development of the stock market. The study of volatility is of great significance to the regulation of Chinese stock market and the rational judgment of investors. This paper takes the Shanghai and Shenzhen Composite Index, which is the most representative stock market in Shanghai and Shenzhen, as the research object. The latest historical data are used to analyze the stock market volatility in recent years in China. The daily data of 5 minutes and 1 minute of each stock are selected to study the volatility of two mean models and six GARCH variance models. Two conclusions are drawn:. 1. The ARFIMA model and the EGARCH model are the most suitable models to study the volatility of Shanghai and Shenzhen stock markets in recent years. 2. The optimal volatility model is different for different frequency return sequences, and the higher the frequency, the better the fitting effect and prediction effect of volatility model. There are three reasons:. 1. With the perfection of the stock market system, the stock market income time series has long memory. 2ARFIMA-EGARCH model synthetically considers the influence of autoregressive heteroscedasticity, leverage effect, long memory and risk on the return of stock market in China. 3. The higher the data frequency is, the more comprehensive the stock market information is, and the more favorable the volatility model is to fit and forecast.
【学位授予单位】:湘潭大学
【学位级别】:硕士
【学位授予年份】:2014
【分类号】:F830.91;F224

【参考文献】

相关期刊论文 前10条

1 陈丽娟;;基于EGARCH-M模型和沪深300指数的股市风险分析[J];东北财经大学学报;2010年02期

2 关华;;基于GARCH族模型的深证成指价格波动研究[J];湖南大学学报(社会科学版);2011年03期

3 刘金全;崔畅;;中国沪深股市收益率和波动性的实证分析[J];经济学(季刊);2002年03期

4 王蒋凤;吴群英;;基于GARCH族模型对中国股市波动的分析与预测[J];经济研究导刊;2011年34期

5 陈艳;韩立磊;;沪深300指数收益波动性实证研究[J];金融经济;2009年14期

6 贺京同,霍焰;投资者行为、资产价格与股市波动[J];南开经济研究;2004年02期

7 史代敏;罗来东;庞皓;;股票市场收益率波动长记忆性的分解及实证研究[J];数量经济技术经济研究;2006年08期

8 鲁万波;;基于非参数GARCH模型的中国股市波动性预测[J];数理统计与管理;2006年04期

9 金秀;姚瑾;;用修正重标极差法对上证指数长期记忆性的研究[J];数理统计与管理;2006年05期

10 金秀;姚瑾;庄新田;;基于分数阶差分的ARFIMA模型及预测效果研究[J];数理统计与管理;2007年05期



本文编号:1559372

资料下载
论文发表

本文链接:https://www.wllwen.com/jingjilunwen/touziyanjiulunwen/1559372.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户b5b2f***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com