我国地区证券市场需求综合评价研究
发布时间:2018-03-15 18:33
本文选题:证券市场需求 切入点:综合评价 出处:《暨南大学》2017年硕士论文 论文类型:学位论文
【摘要】:为全面掌握全国31个省和直辖市地区证券市场需求,给G证券股份有限公司分公司网点布局与分级管控提供参考,适应现代精细化管理要求。本文对全国31个省市2011-2015年经济发展水平和证券业市场容量指标进行收集,构建了包含19个指标的地区证券市场需求综合评价指标体系。文中首先运用模糊物元分析法对各地区截面数据分别展开综合评价,得出我国31个省市在2011-2015年各年份综合排名情况。然后创造性引入基于TOPSIS改进的动态因子分析法,基于2011-2015年的面板数据,构建了样本、变量和时间的三维立体综合评价,评价结果既具有横向对比性又满足纵向可比性。两种模型对各地区综合评价结果接近一致,验证了评价结果的客观合理性。结论得出各地区金融市场发展水平在一个地区证券行业市场需求中起到关键作用;我国31个省市证券市场需求整体呈稳步上升趋势,虽地区间差异性明显但差距正在逐渐缩小;广东、上海、北京、江苏、浙江、山东等地证券市场需求处于领先地位,且广东省5年来一直排名第一;福建省5年间排名不断攀升,目前正处于快速发展期,而贵州、宁夏、海南、甘肃、青海、西藏地区排名落后。最后本文根据模型分析结果并结合G证券公司发展实际,针对性的为G证券公司提出分公司网点布局和分级管控策略与建议。
[Abstract]:In order to fully grasp the securities market demand of 31 provinces and municipalities directly under the Central Government, and to provide a reference for the distribution and hierarchical control of branches of G Securities Co., Ltd., In order to meet the requirements of modern fine management, this paper collects the economic development level of 31 provinces and cities and the market capacity index of securities industry in 2011-2015. This paper constructs a comprehensive evaluation index system of regional security market demand including 19 indexes. Firstly, the fuzzy matter-element analysis method is used to evaluate the regional cross-section data respectively. The comprehensive ranking of 31 provinces and cities in 2011-2015 is obtained. Then the dynamic factor analysis method based on TOPSIS is creatively introduced. Based on the panel data of 2011-2015, the three-dimensional comprehensive evaluation of samples, variables and time is constructed. The evaluation results are both horizontal and vertical. The results of the two models are close to the same for each region. The objective rationality of the evaluation results is verified. The conclusion is that the development level of the regional financial market plays a key role in the market demand of a regional securities industry, and the overall demand of the 31 provinces and cities of China is steadily rising. Guangdong, Shanghai, Beijing, Jiangsu, Zhejiang and Shandong are in the leading position in the demand of securities market, and Guangdong Province has been ranked first in the past five years. Fujian Province ranks higher in five years and is now in a period of rapid development, while Guizhou, Ningxia, Hainan, Gansu, Qinghai and Tibet are lagging behind. Finally, according to the results of the model analysis and combined with the actual development of G Securities Company, Put forward the branch network layout and hierarchical control strategy and suggestions for G Securities Company.
【学位授予单位】:暨南大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:F832.51
【参考文献】
相关期刊论文 前10条
1 李福祥;刘琪琦;;我国地区金融发展水平综合评价研究——基于面板数据的因子分析和topsis实证研究[J];工业技术经济;2016年03期
2 何剑;李玲芳;郭凯江;;基于模糊综合评价模型的我国金融综合服务的有效性研究——以银行为主导的金融控股公司为例[J];金融与经济;2016年02期
3 高华川;张晓峒;;动态因子模型及其应用研究综述[J];统计研究;2015年12期
4 张鹏;郑耀星;;基于动态因子分析的旅游竞争力研究——以珠江三角洲为例[J];资源开发与市场;2015年06期
5 董小刚;王淑影;王纯杰;;基于动态因子的经济水平差异分析[J];长春工业大学学报;2015年02期
6 钱学凤;温艳萍;;基于动态因子分析的上海港竞争力实证研究[J];海洋经济;2015年02期
7 赵t,
本文编号:1616453
本文链接:https://www.wllwen.com/jingjilunwen/touziyanjiulunwen/1616453.html