当前位置:主页 > 经济论文 > 投融资论文 >

基于GA-BP算法的科技型企业信贷评价指标体系研究

发布时间:2018-03-25 15:14

  本文选题:科技型企业 切入点:信贷评价指标体系 出处:《天津财经大学》2014年硕士论文


【摘要】:科技型企业具有高科技性、高成长性、高风险性的“三高”特点,在全球科技创新飞速发展和我国现有金融体系“避险”特性的背景下,“融资难”问题是其不断发展壮大过程中所面临的长期问题。在我国,商业银行贷款是解决科技型企业融资困难的主要手段,也是首要的间接融资方式。但由于科技型企业数量多,发展历史短,市场风险相对大,经营利润不稳定,企业所拥有的可以明确进行评估和抵押的资产少等特点,导致企业的信用级别普遍不高,因此很难通过商业银行的贷款资格审查。本文以我国科技型企业为研究对象,首先介绍了信贷评价指标体系基本理论和信贷评价模型,并将人工神经网络模型与常见评价模型进行比较分析。随后阐述了科技型企业信贷评价指标的设置原则并提出本文选取的评价指标,接着运用层次分析法和专家打分法对指标进行深入分析并赋予权重,以此建立一套科学、合理、有效的科技型企业信贷评价指标体系,并通过分析科技型企业的产业特征和信贷需求,最终以天津市25家科技型企业为例进行了实证研究:基于遗传算法优化的BP神经网络建立了一个针对我国科技型企业的信贷评价模型。基于GA-BP算法的神经网络模型克服了传统BP算法容易陷入局部最小收敛速度较慢、模型结构不易确定等缺陷,同时,在继承传统BP神经网络的自学习、自适应和非线性映射能力的基础上,有效降低了输出结果的误差,改善了模型的性能,提高了BP神经网络的泛化能力。最后通过数据的验证说明了基于GA-BP算法的神经网络模型对于科技型企业信贷评价指标体系的建立是完全有效并可行的。本文的研究成果对进一步在实践中探索科技型企业信贷评价指标体系和解决科技型企业融资难的问题具有重要意义。
[Abstract]:Science and technology enterprises have the characteristics of high technology, high growth and high risk. In the context of the rapid development of global scientific and technological innovation and the "safe haven" characteristics of our existing financial system, the problem of "financing difficulty" is a long-term problem in the process of its continuous development and expansion. Commercial bank loans are the main means to solve the financing difficulties of sci-tech enterprises and the primary indirect financing methods. However, due to the large number of sci-tech enterprises, short history of development, relatively large market risks and unstable operating profits, The characteristics that enterprises have, such as less assets that can be clearly assessed and mortgaged, lead to a general low credit level of enterprises, so it is difficult to pass the loan qualification examination of commercial banks. This paper takes our country's science and technology enterprises as the research object. First of all, it introduces the basic theory of credit evaluation index system and credit evaluation model. The paper compares the artificial neural network model with the common evaluation model, then expounds the setting principle of the credit evaluation index of the science and technology enterprise and puts forward the evaluation index selected in this paper. Then it uses the analytic hierarchy process and the expert scoring method to carry on the thorough analysis to the index and endows the weight, thus establishes a set of scientific, reasonable, effective science and technology enterprise credit appraisal index system. And through the analysis of the industrial characteristics and credit demand of science and technology enterprises, Finally, 25 enterprises in Tianjin are taken as an example. BP neural network based on genetic algorithm optimization is used to establish a credit evaluation model for Chinese science and technology enterprises. Neural network model based on GA-BP algorithm. It overcomes the slow convergence speed of traditional BP algorithm, which is easy to fall into local minimum convergence. The model structure is difficult to determine and so on. At the same time, on the basis of inheriting the self-learning, adaptive and nonlinear mapping ability of the traditional BP neural network, the output error is effectively reduced, and the performance of the model is improved. The generalization ability of BP neural network is improved. Finally, the neural network model based on GA-BP algorithm is proved to be effective and feasible for the establishment of credit evaluation index system of science and technology enterprises. The research results are of great significance to further explore the credit evaluation index system of science and technology enterprises in practice and to solve the problem of financing difficulties of science and technology enterprises.
【学位授予单位】:天津财经大学
【学位级别】:硕士
【学位授予年份】:2014
【分类号】:F275;F832.4

【参考文献】

相关期刊论文 前10条

1 宋昱雯;刘亚娜;;模糊AHP法在中小企业信用评价指标体系构建中的应用[J];企业导报;2013年16期

2 吕晓丹;范宏;;基于决策树的信用评价模型及实证研究[J];市场周刊(理论研究);2013年08期

3 赵玲;贺小海;陈晓慧;张义荣;;我国科技型企业成长性评价体系研究——以科技型中型企业为例[J];科技和产业;2013年03期

4 贾炜莹;王迪;;中小企业信用贷款风险指标体系构建及评价[J];河北工程大学学报(社会科学版);2013年01期

5 侯昊鹏;;国内外企业信用评级指标体系研究的新关注[J];经济学家;2012年05期

6 蔺全录;刘洋;;基于BP-ANN的科技型中小企业成长性测度研究──以兰州市为例[J];企业活力;2012年03期

7 黄飞鸣;;金融体系的顺周期性问题解读[J];经济评论;2010年02期

8 朱勇萍;陈继祥;;科技型中小企业创新能力评估指标体系研究[J];计算机应用与软件;2009年03期

9 王凯;黄世祥;;行业内中小企业信用评估模型及应用[J];数学的实践与认识;2008年04期

10 蒋志华;张锐;;上市公司信用评价指标体系的构建[J];商场现代化;2006年24期

相关硕士学位论文 前6条

1 邓舒放;基于决策树—神经网络的个人信用评估组合模型的构建[D];湖南大学;2012年

2 汪莉;基于Logistic回归模型的中小企业信用评分研究[D];合肥工业大学;2008年

3 黄英婷;我国商业银行的中小企业信用评级研究[D];暨南大学;2006年

4 马杰;我国中小企业信用评价模型及评级制度探讨[D];对外经济贸易大学;2006年

5 陶军;基于业绩的企业信用风险预警模型研究[D];北京化工大学;2005年

6 田俊平;我国企业信用评价指标有效性研究[D];北京化工大学;2005年



本文编号:1663678

资料下载
论文发表

本文链接:https://www.wllwen.com/jingjilunwen/touziyanjiulunwen/1663678.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户7fca0***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com