当前位置:主页 > 经济论文 > 投融资论文 >

带广义F-G-M Copula函数风险模型的分红策略

发布时间:2018-08-01 11:10
【摘要】:在研究经典复合泊松风险模型时,一般我们都假定索赔额和索赔时间间隔二者是相互独立的.然而,事实上,索赔额和索赔时问间隔之间可能具有某种相依性.这种打破索赔额和索赔时间间隔之间独立性的风险模型就是一种相依风险模型.相依风险模型自提出以来得到了广泛研究.近年来,学者们提出了索赔额和索赔时间间隔的联合分布满足Copula函数的相依复合泊松风险模型.后来,有学者又研究了带广义F-G-M Copula函数的相依复合泊松风险模型的Gerber-Shiu函数.这类风险模型是由经典复合泊松风险模型延伸而来,它的相依结构是基于一种广义的Farlie-Gumbel-Morgenstern Copula函数建立的.针对带有广义F-G-M Copula函数的相依复合泊松风险模型,学者们又进一步研究了其障碍分红策略下的折现罚金Gerber-Shiu函数. 本文继续对带广义F-G-M Copula函数的相依复合泊松风险模型的有关分红策略问题进行探讨.这篇论文主要研究了这种相依风险模型的三种分红策略:障碍分红策略、阈值分红策略和混合分红策略,得出了期望折现分红函数分别满足的积分-微分方程及边界条件.除此之外,在混合分红策略下,我们还求出了期望折现罚金Gerber-Shiu函数所满足的积分-微分方程及边界条件.本文最重要的结果就是,针对索赔额服从指数分布这一特殊情况,我们得到了期望折现分红函数所满足的微分方程.但是,当索赔额服从其它分布时,本文尚未得到较好的结果. 这篇文章的结构如下. 第一章主要阐述了本篇论文所研究问题的背景知识. 第二章详细介绍了带广义F-G-M Copula函数的相依复合泊松风险模型. 第三章详细阐述了三种分红策略即障碍分红策略、阈值分红策略和混合分红策略.在这三种分红策略下,我们分别推导出了期望折现分红函数满足的积分-微分方程及边界条件.更进一步,当索赔额服从指数分布时,我们将期望折现分红函数所满足的积分-微分方程化成了微分方程,并举例说明了如何求出期望折现分红函数的具体表达式. 第四章推导出具有混合分红策略的Gerber-Shiu函数满足的积分-微分方程和边界条件.
[Abstract]:When we study the classical compound Poisson risk model, we generally assume that the claim amount and the claim interval are independent of each other. In fact, however, there may be some dependency between the amount claimed and the time interval between the claim and the claim. This risk model, which breaks the independence between claim amount and claim interval, is a dependent risk model. The dependent risk model has been widely studied since it was proposed. In recent years, scholars have proposed a dependent compound Poisson risk model, in which the joint distribution of claim amount and claim interval satisfies the Copula function. Later, some scholars have studied the Gerber-Shiu function of the dependent compound Poisson risk model with generalized F-G-M Copula function. This kind of risk model is extended from the classical compound Poisson risk model and its dependent structure is based on a generalized Farlie-Gumbel-Morgenstern Copula function. For the dependent compound Poisson risk model with generalized F-G-M Copula function, the discounted penalty Gerber-Shiu function under the barrier dividend strategy is further studied. In this paper, we continue to discuss the dividend strategy of the dependent compound Poisson risk model with generalized F-G-M Copula function. In this paper, we mainly study three dividend strategies of this dependent risk model: obstacle dividend strategy, threshold dividend strategy and hybrid dividend strategy, and obtain the integro-differential equations and boundary conditions which are satisfied by the expected discount dividend function respectively. In addition, under the mixed dividend strategy, we also obtain the integro-differential equations and boundary conditions satisfied by the expected discounted penalty Gerber-Shiu function. The most important result of this paper is that we obtain the differential equation of the expected discounted dividend function for the special case of the exponential distribution of the claim amount. However, when the amount claimed from other distribution, this paper has not obtained a better result. The structure of the article is as follows. The first chapter mainly elaborates the background knowledge of the problems studied in this paper. In the second chapter, the dependent compound Poisson risk model with generalized F-G-M Copula function is introduced in detail. In the third chapter, three kinds of dividend strategies, i.e. obstacle dividend strategy, threshold dividend strategy and hybrid dividend strategy, are described in detail. Under these three dividend strategies, we derive the integro-differential equations and boundary conditions of the expected discounted dividend function. Furthermore, when the claim amount is distributed exponentially, we transform the integro-differential equation satisfied by the expected discounted dividend function into a differential equation, and illustrate how to obtain the concrete expression of the expected discounted dividend function. In chapter 4, the integro-differential equations and boundary conditions of Gerber-Shiu function with mixed dividend strategy are derived.
【学位授予单位】:曲阜师范大学
【学位级别】:硕士
【学位授予年份】:2014
【分类号】:O211.6;F830.91

【共引文献】

相关期刊论文 前10条

1 王后春;;两险种广义Erlang(2)风险模型的破产概率[J];工程数学学报;2013年05期

2 杨鹏;;边界分红策略下跳-扩散风险过程的最优投资[J];重庆师范大学学报(自然科学版);2013年06期

3 陈倩;何传江;;带常数界绝对破产时刻罚金折现函数期望[J];东北师大学报(自然科学版);2013年04期

4 Xiao Yun MO;Xiang Qun YANG;;Criterion of Semi-Markov Dependent Risk Model[J];Acta Mathematica Sinica(English Series);2014年07期

5 赵金娥;;常红利边界下带干扰的双复合Poisson风险模型[J];辽宁工程技术大学学报(自然科学版);2014年05期

6 周洪峰;;一类保险风险模型的分红问题[J];南开大学学报(自然科学版);2013年02期

7 张媛媛;王文胜;;带常利率的二维风险模型的破产概率(英文)[J];华东师范大学学报(自然科学版);2013年06期

8 喻军;李亮;张玉霞;;带破产赤字补偿的Omega模型最大分红问题[J];南开大学学报(自然科学版);2013年06期

9 王姗姗;张春生;;带有借款利息和税收的常利率风险模型(英文)[J];南开大学学报(自然科学版);2013年06期

10 田飞;王传玉;张大伟;;复合Poisson-geometric风险模型下第n次索赔时的破产概率研究[J];数学理论与应用;2013年04期

相关博士学位论文 前10条

1 彭丹;几类风险模型的分红问题研究[D];中南大学;2013年

2 张帅琪;几类风险模型随机控制问题的研究[D];中南大学;2012年

3 陈密;保险风险理论中的破产和分红问题[D];南开大学;2013年

4 郑祥风;中国上市公司动态资本结构的理论与实证研究[D];厦门大学;2014年

5 莫晓云;受Markov链调控的风险模型研究[D];湖南师范大学;2014年

6 董继国;逐段决定复合泊松风险模型的最优控制问题[D];河北师范大学;2014年

7 宇世航;基于整值时间序列离散风险模型的渐近推断[D];吉林大学;2014年

8 于文广;保险风险模型的破产理论与分红策略研究[D];山东大学;2014年

9 赵永霞;若干风险模型中期望折现罚金函数和最优分红的研究[D];华东师范大学;2014年

10 张媛媛;几类重尾风险模型破产概率的研究[D];华东师范大学;2014年

相关硕士学位论文 前10条

1 赵昌宝;关于Copula相依风险模型绝对破产问题的研究[D];湖南师范大学;2013年

2 乐胜杰;关于分红策略下的离散风险模型的研究[D];湖南师范大学;2013年

3 柴军舰;带投资组合的一类相依风险模型的研究[D];兰州理工大学;2013年

4 李杨;带扰动常利率对偶风险模型的分红问题研究[D];曲阜师范大学;2013年

5 刘郁菲;现金储备遵循双边跳跃扩散过程时的最优分红策略[D];华南理工大学;2013年

6 王青壮;基于交替与延迟交替更新过程的随机模糊破产模型研究[D];华北电力大学;2013年

7 李海宾;一类带阈值分红策略下相依风险模型的Gerber-Shiu折现罚金函数[D];中央民族大学;2013年

8 付燕;关于带壁分红策略下对偶风险模型的研究[D];重庆大学;2013年

9 李平;保费随机的相依风险模型的破产问题研究[D];重庆大学;2013年

10 范希文;鞅在保险精算中的应用[D];重庆理工大学;2013年



本文编号:2157380

资料下载
论文发表

本文链接:https://www.wllwen.com/jingjilunwen/touziyanjiulunwen/2157380.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户380fc***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com