当前位置:主页 > 经济论文 > 企业经济论文 >

基于客户价值细分的A电商企业CRM系统优化

发布时间:2018-05-06 23:06

  本文选题:电商企业 + 客户价值 ; 参考:《北京交通大学》2017年硕士论文


【摘要】:在网络经济迅猛发展、市场竞争日益加剧的背景下,客户在企业中所扮演的角色和所处的地位都发生了翻天覆地的变化,客户对于企业未来的生存发展都起着决定性的作用。企业成功的关键是确定企业的客户,并成功获取客户,对客户进行合理的客户分类是企业与客户之间建立良好的关系、并和谐发展的前提条件,也是非常重要的条件。电商企业近年来发展迅速,越来越多的电商企业破土而出,进入人们的视野,A电商企业面临的市场竞争越来越大。A电商企业面临着以产品为中心向客户数据为中心的模式转变,对客户进行合理的细分成为了这一巨大转变的前提和基础。在拥有大量客户行为数据的情况下,如何对客户进行合理的细分,并为不同类型的客户提供符合其特点的服务,从而更好地维系与客户之间的关系,并为企业带来更多的利润,已成为了 A电商企业眼下急需解决的问题。本文通过分析当前A电商企业客户关系管理中存在的问题,发现对该客户关系管理系统优化的必要性,并进一步选取合适的指标,进行对A电商企业客户生命周期价值模型的构建,在分析K-means聚类分析算法不足的基础上对其改进,利用改进后的K-means算法对A电商企业的客户进行客户细分,然后对当前客户关系管理系统在客户细分方面存在的缺陷进行优化。主要工作如下:构建客户价值的量化模型。通过选取更加契合A电商企业的指标,以客户关系管理理论为基础,构建A电商企业的客户价值模型,为后续的研究奠定基础。基于客户价值模型进行客户细分。剖析聚类分析经典算法K-means算法,阐述其基本的思想和流程,从而分析其存在的不足之处,提出改进算法,并进一步对A电商企业的客户进行细分。客户关系管理系统的优化。利用细分后的结果,对客户关系管理系统在客户细分方面存在的不足进行优化,从而提高企业客户满意度和留存率,实现最佳的客户关系管理。
[Abstract]:Under the background of rapid development of network economy and increasing market competition, the role and position of customers in enterprises have changed dramatically, and customers play a decisive role in the future survival and development of enterprises. The key to the success of an enterprise is to determine the customer of the enterprise and obtain the customer successfully. The reasonable classification of the customer is the prerequisite for the establishment of a good relationship and the harmonious development between the enterprise and the customer, and is also a very important condition. With the rapid development of e-commerce enterprises in recent years, more and more e-commerce enterprises have stepped out of the ground and entered the field of vision. The market competition faced by e-commerce enterprises is increasing. A e-commerce enterprises are facing a transformation from product-centered to customer-data-centric. A reasonable breakdown of the customer has become the premise and basis of this huge change. In the case of having a large number of customer behavior data, how to segment the customer reasonably and provide different types of customer with the service according to their characteristics, so as to better maintain the relationship with the customer, and bring more profits for the enterprise. It has become a problem urgently needed to be solved at present by A e-commerce enterprises. Based on the analysis of the problems existing in customer relationship management (CRM) in E-business enterprises, this paper finds out the necessity of optimizing the CRM system, and further selects appropriate indicators. On the basis of analyzing the insufficiency of K-means clustering analysis algorithm, the customer life cycle value model of A ecommerce enterprise is constructed, and the improved K-means algorithm is used to segment the customers of A e-commerce enterprise. Then the defects of current customer relationship management system in customer segmentation are optimized. The main work is as follows: build the quantitative model of customer value. Based on the theory of customer relationship management, the customer value model of E-Commerce A enterprise is constructed by selecting more suitable indexes for E-business enterprise, which will lay a foundation for further research. Customer segmentation based on customer value model. This paper analyzes the classical clustering analysis algorithm K-means algorithm, expounds its basic idea and flow, analyzes its shortcomings, proposes an improved algorithm, and further subdivides the customers of A e-commerce enterprise. Customer relationship management system optimization. By using the result of subdivision, the shortcomings of customer relationship management system in customer segmentation are optimized, so as to improve customer satisfaction and retention rate, and realize the best customer relationship management.
【学位授予单位】:北京交通大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:F274;F724.6

【参考文献】

相关期刊论文 前10条

1 蔡尚霖;;中国电子商务与传统商务的碰撞[J];企业改革与管理;2015年20期

2 李洪霞;;财产保险公司通过客户细分提供更好的服务[J];赤子(上中旬);2015年09期

3 孙卓;;k-均值聚类算法及其应用[J];农业网络信息;2013年07期

4 蔡淑琴;马玉涛;王瑞;;在线口碑传播的意见领袖识别方法研究[J];中国管理科学;2013年02期

5 徐翔斌;王佳强;涂欢;穆明;;基于改进RFM模型的电子商务客户细分[J];计算机应用;2012年05期

6 仝雪姣;孟凡荣;王志晓;;对k-means初始聚类中心的优化[J];计算机工程与设计;2011年08期

7 孙可;刘杰;王学颖;;K均值聚类算法初始质心选择的改进[J];沈阳师范大学学报(自然科学版);2009年04期

8 汪中;刘贵全;陈恩红;;一种优化初始中心点的K-means算法[J];模式识别与人工智能;2009年02期

9 王玲;薄列峰;焦李成;;密度敏感的谱聚类[J];电子学报;2007年08期

10 王莉,张朋柱;网络环境下产品开发中企业和客户交互的形式和内容[J];上海管理科学;2004年05期

相关硕士学位论文 前7条

1 崔丹丹;K-Means聚类算法的研究与改进[D];安徽大学;2012年

2 乔中杰;B2C电子商务网站顾客价值及其应用研究[D];北京化工大学;2011年

3 计海斌;基于改进RFM模型的应用研究[D];吉林大学;2010年

4 梅立群;语文周报社客户管理策略研究[D];河北科技大学;2010年

5 孙江坤;移动行业集团客户价值评估模型的构建及应用[D];同济大学;2008年

6 周涓;基于最大最小距离法的多中心聚类算法研究[D];重庆大学;2006年

7 许叶军;基于BP神经网络的交互式赋权法及应用研究[D];东南大学;2005年



本文编号:1854291

资料下载
论文发表

本文链接:https://www.wllwen.com/jingjilunwen/xmjj/1854291.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户e6d9b***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com