广东省碳排放的影响因素分析及趋势预测
[Abstract]:Global environmental problems are becoming increasingly acute, China is facing tremendous pressure in energy and environment. Guangdong Province, as the largest province in China, has maintained a GDP growth rate of more than 10%. The rapid economic development has brought serious environmental problems, such as high pollution, high emission and high energy consumption, and has become a restrictive factor for the sustainable economic development of Guangdong Province. At present, Guangdong Province is in the stage of rapid development of industrialization, and its per capita carbon dioxide emissions are higher than those of developed countries such as Japan and the United States. Therefore, developing low-carbon economy has become an urgent task. Therefore, it is of great significance to study energy consumption and carbon dioxide in Guangdong Province and formulate corresponding policies and measures. In this study, the CO2 emissions per unit GDP, CO2 emissions per unit GDP and CO2 emissions per unit energy consumption of Guangdong Province from 2000 to 2010 were measured. The results show that the total CO2 emission and per capita CO2 emission of energy consumption in Guangdong Province are increasing, the carbon emission of ten thousand yuan GDP is decreasing, the consumption of raw coal is the main source of carbon emission, and the industrial carbon emission is the main part of energy consumption carbon emission in Guangdong Province. The largest category of total industrial energy consumption is manufacturing. Secondly, this paper uses the logarithmic average di decomposition (LMDI) method to decompose the change of per capita carbon dioxide emissions into four factors: carbon emission coefficient, energy consumption intensity, energy consumption structure and GDP per capita. The factor decomposition model of per capita carbon emissions in Guangdong Province is established to measure the contribution of each factor to the per capita carbon emissions in Guangdong Province, in which the intensity of energy consumption is one of the most important factors affecting carbon emissions. The contribution rate of energy consumption intensity of three industries to total energy consumption intensity is further discussed in this paper. The results show that economic development effect has the largest contribution to energy consumption carbon emissions in Guangdong Province. The energy consumption intensity of the secondary industry is the main reason for the decrease of the energy consumption intensity. Finally, based on the data of carbon emissions in Guangdong Province from 2000 to 2010, the paper makes a short-term prediction of the carbon emissions of Guangdong Province through the Grey GM (1L) model. If Guangdong does not change its current economic development policies, population policies and energy policies, etc. So, Guangdong's carbon emissions will be increasing year by year. By 2016, Guangdong's carbon emissions will reach 745.59 million tons, which shows that the situation of carbon dioxide reduction during the 12th Five-Year Plan period is grim. In the end, the paper puts forward some specific policy suggestions on how to achieve carbon emission reduction in Guangdong Province.
【学位授予单位】:暨南大学
【学位级别】:硕士
【学位授予年份】:2013
【分类号】:F205;F127
【参考文献】
相关期刊论文 前10条
1 岳超;王少鹏;朱江玲;方精云;;2050年中国碳排放量的情景预测——碳排放与社会发展Ⅳ[J];北京大学学报(自然科学版);2010年04期
2 吴巧生;成金华;;中国工业化中的能源消耗强度变动及因素分析——基于分解模型的实证分析[J];财经研究;2006年06期
3 杜强;陈乔;杨锐;;基于Logistic模型的中国各省碳排放预测[J];长江流域资源与环境;2013年02期
4 迟远英;牛东晓;沈滢;刘志;;基于协整的影响我国碳排放因素的模型研究[J];华东电力;2010年05期
5 刘宇;;广东省二氧化碳排放现状及对策[J];开放导报;2009年05期
6 陈滨,孟世荣,陈星,刘毓伟;中国住宅中能源消耗的CO_2排放量及减排对策[J];可再生能源;2005年05期
7 刘尚余;赵黛青;骆志刚;;广东省温室气体减排潜力分析与预测[J];可再生能源;2006年05期
8 钱杰,俞立中;上海市化石燃料排放二氧化碳贡献量的研究[J];上海环境科学;2003年11期
9 张武英;徐伟嘉;刘永红;;广东省低碳发展的能源消耗与CO_2排放分析[J];能源与节能;2012年03期
10 申笑颜;;中国碳排放影响因素的分析与预测[J];统计与决策;2010年19期
相关硕士学位论文 前6条
1 何海;湖北省能源消费及碳排放的综合研究[D];华中科技大学;2011年
2 施美霞;中国碳排放与经济发展的关联研究[D];浙江大学;2010年
3 孙猛;中国能源消费碳排放变化的影响因素实证研究[D];吉林大学;2010年
4 杨慧;基于Kaya公式的中国碳排放影响因素的分析与预测[D];暨南大学;2012年
5 邹晓蓉;广东省碳排放与贸易隐含碳的测算及影响因素研究[D];暨南大学;2012年
6 彭丹;中国碳排放关键驱动因素影响力分析暨未来碳排放预测研究[D];复旦大学;2012年
本文编号:2134571
本文链接:https://www.wllwen.com/jingjilunwen/zhongguojingjilunwen/2134571.html