基于光固化成型的微结构增材制造技术研究
发布时间:2018-06-05 00:24
本文选题:增材制造 + 光固化 ; 参考:《哈尔滨工业大学》2017年硕士论文
【摘要】:光固化增材制造技术成型速度快、精度高,其原理为通过特定波长的光引发液态光敏树脂特定区域发生交联反应,完成相应图案的固化,通过层层堆叠实现三维结构制造。根据光固化的成型方式,其精度影响因素主要有成型光路系统精度、控制精度和树脂成型精度。所以研究提高光固化成型精度的措施已经成为增材制造工程的热点课题之一。现有研究主要集中于光路结构对整体成型精度的影响。但是根据光固化成型原理,难以在大范围成型时实现较高的成型精度。因此在较高成型精度下实现大尺寸模型的增材制造已经成为当下迫切需要解决的难题。本文采用理论分析、模拟仿真与实验研究相结合的方法,应用光固化成型技术,完成光路与控制系统的研制,并通过实验验证该系统能够实现15μm成型精度,10×15×15mm~3成型范围的技术指标要求,具体研究内容包括以下几个方面:完成了高精度光路系统的研制,提出了在保证高精度成型条件下的拼接成型技术,扩大了成型范围,明确了孔径角等参数对成型精度的影响规律并通过Zemax软件进行仿真分析,结合针对于该系统的性能测试实验,确定该成型光路系统满足技术指标要求;结合硬件结构完成了控制系统的研制,实现了投影系统与位移系统的协同控制,并针对拼接成型方式完成了图像的分割处理;研究不同像素点密度与能量扩散之间的规律,通过灰度调控方式进行图片预处理,提高能量均匀性以实现高精度模型的制造。搭建了光固化成型检测系统,完成了成型过程中对模型进行边缘识别与检测,实现了对成型过程进行实时监测,保证每一层的成型精度,提高成型质量。完成了光固化增材制造实验台的搭建,开展了竖直方向成型精度实验研究,确定固化层厚与光照强度和光照时间的关系曲线;开展了水平方向成型精度实验研究,确定其成型精度为±5.5μm。完成了拼接成型实验并对其中关键技术进行了研究,拼接成型范围大于10×15×15mm~3,满足技术指标要求,并实现了传动链免装配一次成型关键技术研究。
[Abstract]:The technology of light curing material processing is rapid and accurate. The principle is that the cross linking reaction occurs through the specific region of liquid Guang Min resin at specific wavelength, the corresponding pattern is solidified, and the three dimensional structure is fabricated by stacking layers. According to the forming mode of light curing, the main factors affecting the precision are the precision of the shaping light path system, the control precision and the resin forming precision. Therefore, the research on the measures to improve the precision of light curing molding has become one of the hot topics in the material increasing engineering. The current research focuses on the influence of optical path structure on the overall forming accuracy. However, according to the principle of light curing, it is difficult to achieve high precision in large scale molding. Therefore, it has become an urgent problem to realize the material increasing manufacturing of large scale model under high forming precision. In this paper, the development of optical path and control system is completed by using the method of theoretical analysis, simulation and experimental research, and the application of light curing molding technology. The experimental results show that the system can meet the technical requirements of 15 渭 m forming precision 10 脳 15 脳 15mm~3. The specific research contents include the following aspects: the development of high precision optical circuit system has been completed. The splicing technology under the condition of high precision forming is put forward, the forming range is enlarged, the influence law of the parameters such as aperture angle on the forming precision is clarified, and the simulation analysis is carried out by Zemax software. Combined with the performance test experiment of the system, it is determined that the shaping optical path system meets the technical requirements, and the control system is developed in combination with the hardware structure, and the collaborative control between the projection system and the displacement system is realized. The image segmentation is completed for the splicing mode, the law between the different pixel density and the energy diffusion is studied, and the image preprocessing is carried out by means of gray level control to improve the energy uniformity to realize the manufacture of the high-precision model. A light curing molding detection system was set up to detect the edge of the model during the molding process. The real-time monitoring of the molding process was realized to ensure the forming accuracy of each layer and improve the molding quality. The building of the experiment bench for the manufacture of light-curing material was completed, the experimental research on the vertical forming precision was carried out, the curve of the relationship between the curing layer thickness and the illumination intensity and the illumination time was determined, and the experimental research on the horizontal direction forming precision was carried out. The molding accuracy is 卤5.5 渭 m. The experiment of splicing molding is completed and the key technology is studied. The range of splicing molding is more than 10 脳 15 脳 15mm ~ (-3), which meets the requirements of technical specifications, and realizes the research of key technology of transmission chain without assembling once.
【学位授予单位】:哈尔滨工业大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TH16
【参考文献】
相关期刊论文 前10条
1 张安峰;李涤尘;梁少端;王潭;严深平;张连重;;高性能金属零件激光增材制造技术研究进展[J];航空制造技术;2016年22期
2 方浩博;陈继民;;基于数字光处理技术的3D打印技术[J];北京工业大学学报;2015年12期
3 兰红波;李涤尘;卢秉恒;;微纳尺度3D打印[J];中国科学:技术科学;2015年09期
4 邵中魁;姜耀林;;光固化3D打印关键技术研究[J];机电工程;2015年02期
5 兰天;;3D打印技术应用的意义[J];内蒙古科技与经济;2014年02期
6 李小丽;马剑雄;李萍;陈琪;周伟民;;3D打印技术及应用趋势[J];自动化仪表;2014年01期
7 吴平;;3D打印技术及其未来发展趋势[J];印刷质量与标准化;2014年01期
8 卢秉恒;李涤尘;;增材制造(3D打印)技术发展[J];机械制造与自动化;2013年04期
9 李怀学;巩水利;孙帆;黄柏颖;;金属零件激光增材制造技术的发展及应用[J];航空制造技术;2012年20期
10 韩希珍;赵建;;结合偏微分方程增强图像纹理及对比度[J];光学精密工程;2012年06期
相关硕士学位论文 前1条
1 陈永亮;灰度图像的直方图均衡化处理研究[D];安徽大学;2014年
,本文编号:1979538
本文链接:https://www.wllwen.com/jixiegongchenglunwen/1979538.html