端面扭动统计摩擦模型研究
[Abstract]:In this paper, using the friction contact model of two spheres (CEB,KE and BKE model), the friction model of rough surface micro-convex body contact considering the interaction between adjacent micro-convex bodies is established. The surface characteristics of the rough surface are described by the probability distribution method. The slip mechanism of the micro convex body is defined based on the height and tangential displacement of the micro convex body. The method of statistical summation is used to extend the micro convex body scale friction contact to the macro scale rough surface contact reciprocating sliding friction contact. The contact face is differentiated, and the reciprocating sliding friction model is modified so that it can be applied to each differential region. The torsional friction model of the end face is established by using the method of statistical summation. The end torsional friction behavior of MC nylon-45 # steel was simulated by using the end torsional friction model, and the surface roughness and positive pressure of the end face were also studied, and the friction behavior of the end face of Nylon-45 # steel was simulated. The influence of nominal contact area on torsional friction behavior of end face is simulated. The end-face torsional friction behavior of MC nylon-45# steel, brass-45# steel and 45# steel-45# steel was studied by using a self-made end-face torsional friction tester. The prediction accuracy of the friction model was verified by experiments. The main conclusions are as follows: 1. The microconvex friction model established by BKE contact model can adapt to the larger normal deformation and has better applicability. 2, in the reciprocating sliding friction model, The reciprocating stroke determines the shape of F未 (friction displacement) curve (elliptical, parallelogram or rectangle). The initial complete slip position (the position where the friction force reaches the maximum for the first time) is not affected by the reciprocating stroke. The surface roughness has no effect on the shape of F-未 curve and the initial complete slip position. With the decrease of roughness (less than Ra1.6), the friction force increases rapidly, and when the roughness is larger than Ra1.6, the friction force tends to increase. The friction force is linearly related to the positive pressure, and the friction force increases with the increase of the positive pressure. The change of the positive pressure has no effect on the shape of the F-未 curve and the initial complete slip position. 3. The torsional friction model of the end face is used to contact the mechanical properties of the material. Roughness parameters, angular displacement and positive pressure are input parameters to simulate torsional contact of rough surface and output T-(friction torque-angular displacement) curve. By using the formula for judging the slip state of the micro-convex body and the height distribution function of the micro-convex body, the relationship between the proportion of the slip micro-convex body and the angular displacement and the complete slip radius of the contact end face under different angular displacement can be calculated. The maximum torque increases linearly with the increase of contact radius (nominal contact area). Both the slip ratio and the complete slip radius of the micro-convex body increase with the initial complete slip of the contact interface. Too large or too small surface roughness will increase the maximum torque, but the change of surface roughness has no effect on the slip mechanism of the contact interface, the initial complete slip position, the complete slip radius and the slip ratio of the contact microconvex body. The change of contact pressure has no effect on the slip mechanism and initial complete slip position, but has a great influence on the maximum torque. The maximum torque increases linearly with the increase of contact pressure. In addition, the change of the positive pressure has no effect on the slip ratio and the complete slip radius of the contact micro-convex body when the initial complete slip occurs.
【学位授予单位】:中国矿业大学
【学位级别】:硕士
【学位授予年份】:2016
【分类号】:TH117
【相似文献】
相关期刊论文 前10条
1 冷永胜,王国诚,黄炎;名义平表面无穷微凸体群的非Hertz接触[J];清华大学学报(自然科学版);1992年05期
2 李冰;罗玉军;高中庸;梁辉;;微凸体油膜弹性支承效应的刨切试验验证研究[J];制造技术与机床;2007年04期
3 李冰;罗玉军;高中庸;梁辉;;微凸体油膜弹性支承效应的刨切试验验证研究[J];机械设计与制造;2007年05期
4 沈萌红,全永昕,周桂如;混合润滑时各向异性粗糙表面微凸体载荷分配的研究[J];浙江大学学报(自然科学版);1990年06期
5 朱林波;庄艳;洪军;杨国庆;;一种考虑侧接触的微凸体弹塑性接触力学模型[J];西安交通大学学报;2013年11期
6 刘莹,陈大融,杨文言;轧辊表面微凸体形貌激光毛化技术的试验研究[J];机械工程学报;2003年07期
7 胡兆稳;刘q;王伟;刘小君;;塑性成形表面微凸体平坦化行为研究[J];润滑与密封;2013年02期
8 赵强;李皋;肖贵林;辛春彦;程纯勇;;单裂隙渗流有限元数值仿真研究[J];水资源与水工程学报;2014年02期
9 伍丽峰;高中庸;;基于正交刨切实验的微凸体油膜弹性支承效应研究[J];润滑与密封;2009年08期
10 杨川江;王伟;马树全;刘q;;表面微凸体形态对三体摩擦界面间隙的影响[J];合肥工业大学学报(自然科学版);2013年06期
相关会议论文 前3条
1 张占立;丁建宁;杨继昌;胡友耀;解国新;;缅甸蟒蛇腹部表皮的摩擦机理研究[A];第六届全国表面工程学术会议暨首届青年表面工程学术论坛论文集[C];2006年
2 高中庸;黄位健;周光宝;;微凸体油膜弹性支承效应的刨切实验验证[A];2007年中国机械工程学会年会论文集[C];2007年
3 张占立;丁建宁;杨继昌;胡友耀;解国新;;缅甸蟒蛇腹部表皮的摩擦机理研究[A];第六届全国表面工程学术会议论文集[C];2006年
相关博士学位论文 前2条
1 张志明;规则微凸体表面有向摩擦建模及应用研究[D];华东理工大学;2012年
2 胡兆稳;混合润滑状态下塑性变形界面微凸体平坦化行为研究[D];合肥工业大学;2013年
相关硕士学位论文 前4条
1 陈林博;混凝土开裂面的力学行为分析[D];华南理工大学;2015年
2 杨蕊;细观尺度下切削钛合金刀具接触过程的研究[D];天津理工大学;2015年
3 牛成超;端面扭动统计摩擦模型研究[D];中国矿业大学;2016年
4 王爱彬;粗糙表面接触界面微凸体压平效应研究[D];合肥工业大学;2013年
,本文编号:2472540
本文链接:https://www.wllwen.com/jixiegongchenglunwen/2472540.html