Urban Taxi时空特征大数据可视交通态势融合处理系统关键技术
发布时间:2018-01-04 01:08
本文关键词:Urban Taxi时空特征大数据可视交通态势融合处理系统关键技术 出处:《山东大学》2015年硕士论文 论文类型:学位论文
【摘要】:出租车是城市流动文明窗口,反应出一个城市的交通系统的发展水平,如何降低出租车空驶率,减少废气排放,获取城市动态实时交通流、车辆安全可视、规划乘客出行路线成为当前提高出租车信息化服务亟需解决的问题,国家十二五规划中提出交通信息化是国家优先发展的物联网的第二主题领域,因此,交通信息化相关问题成为当前国内外研究的热点。导航和电子地图的迅速发展与应用,为实时路况的实现提供了数据来源和技术支撑。本文通过分析与大数据可视交通态势融合处理相关的基础理论和相关技术,针对出租车的精确导航定位、安全可视和大数据交通态势融合问题,设计了出租车导航定位和视频采集监视终端,提出了时空特征大数据可视交通态势融合处理方法,通过车载导航和图像采集终端与后台的交互,实现时空特征大数据的可视交通态势融合,实现了拥堵路况的可视呈现,为分析引起交通拥堵的原因及制定相关决策提供了依据。通过分析当前路网数据拓扑网络的结构,提出了基于路段的实时交通拥堵预测的城市路网模型,不仅能够减少冗余道路数据的存储,建立正确的道路拓扑关系,还能够对道路的通行能力、交叉口的转向能力等交通规则进行表示,并支持空间信息的查询分析,在此基础上研究了规划路径的 A*算法并进行了改进,改进的算法不仅考虑道路拓扑结构,还考虑道路的实时动态信息,利用此算法在规划路线时,可在车辆到达目的地之前多次搜索最优路径,根据道路拥堵状况实时动态选取,减少了人们的出行时间。本文设计的时空特征大数据交通态势融合系统,实现了出租车动态时空分布数据的动态交通态势分析方法和展现手段,可将车、路网动态数据进行快速匹配,在电子地图上融合了图像信息,实时监控车辆的位置、速度、状态、历史查询、人员管理、车辆管理、出入城动态围栏、智能处理、安全可视等信息,满足了出租车车辆的动态监管和信息化服务。目前,开发的车辆视频采集监视终端已在车辆上安装试用,可实现与出租车时空特征大数据可视交通态势融合处理系统的交互应用,提出的大数据可视交通态势融合处理方法、道路网络模型和改进的 A*算法在该系统软件上进行了集成,测试结果显示了可视交通态势处理方法、网络模型和改进算法的优越性,满足了系统的动态实时交通地图显示、动态路径选择、地图可视数据融合等功能要求。
[Abstract]:Taxi is a city mobile civilization window, reflecting the level of development of a city's traffic system, how to reduce the taxi empty driving rate, reduce emissions, to obtain urban dynamic real-time traffic flow, vehicle safety and visibility. Planning passenger travel route has become an urgent problem to solve in order to improve the taxi information service. In the 12th Five-Year Plan, traffic informatization is the second subject area of the Internet of things, which is the priority of national development. Traffic information related issues have become the focus of research at home and abroad. Navigation and electronic map of the rapid development and application. This paper analyzes the basic theory and related technology related to big data visual traffic situation fusion processing, aiming at the accurate navigation and positioning of taxi. Security visualization and big data traffic situation fusion problem, taxi navigation and positioning and video acquisition and monitoring terminal design, the space-time feature big data visual traffic situation fusion processing method. Through the interaction between vehicle navigation and image acquisition terminal and background, the visual traffic situation fusion of the space-time feature big data is realized, and the visible presentation of congested road condition is realized. This paper provides the basis for analyzing the causes of traffic congestion and making relevant decisions. By analyzing the structure of the current network data topology, the urban road network model of real-time traffic congestion prediction based on road sections is proposed. It can not only reduce the storage of redundant road data and establish the correct road topology relationship, but also can express the traffic rules such as the capacity of the road, the turning ability of the intersection and so on. On this basis, the algorithm of path planning is studied and improved. The improved algorithm not only takes into account the road topology, but also takes into account the real-time dynamic information of the road. By using this algorithm, the optimal path can be searched several times before the vehicle reaches the destination, and real-time dynamic selection can be made according to the road congestion. This paper designed the big data traffic situation fusion system, realized the dynamic traffic situation analysis method and the display method of the taxi dynamic spatial and temporal distribution data. The dynamic data of road network are matched quickly, the image information is fused on the electronic map, and the position, speed, status, historical inquiry, personnel management, vehicle management, dynamic fence of the city are monitored in real time. Intelligent processing, security visualization and other information, meet the dynamic supervision of taxi vehicles and information services. At present, the development of vehicle video collection and monitoring terminal has been installed on the vehicle trial. It can realize the interactive application of big data visual traffic situation fusion processing system with taxi space-time characteristics. The big data visual traffic situation fusion processing method is proposed. The road network model and the improved A * algorithm are integrated into the system software. The test results show the advantages of the visual traffic situation processing method, the network model and the improved algorithm. The system meets the requirements of dynamic real-time traffic map display, dynamic path selection, map visual data fusion and so on.
【学位授予单位】:山东大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:U495;TP202
【参考文献】
相关期刊论文 前4条
1 鲍培明;距离寻优中Dijkstra算法的优化[J];计算机研究与发展;2001年03期
2 蒋金亮;宋瑞;李晋;刘杰;;基于DEA的城市道路交通拥堵评价[J];交通信息与安全;2011年03期
3 邹亮;徐建闽;朱玲湘;;A~*算法在基于电子地图的动态路径诱导中的应用[J];武汉理工大学学报(交通科学与工程版);2006年05期
4 钱红f;葛文锋;钟鸣;葛铭;;基于分层的改进A算法在路径规划中的应用[J];计算机工程与应用;2014年07期
,本文编号:1376371
本文链接:https://www.wllwen.com/kejilunwen/daoluqiaoliang/1376371.html