当前位置:主页 > 科技论文 > 路桥论文 >

铁路隧道岩溶突水灾害风险识别与预警方法研究

发布时间:2018-03-30 16:18

  本文选题:岩溶突水 切入点:地质灾害 出处:《北京交通大学》2015年博士论文


【摘要】:本文以沪昆高速铁路等重大工程项目为依托,在系统总结大量隧道工程施工期岩溶突水灾害案例的基础上,研究了隧道工程岩溶突水灾害的类型、特征、影响控制因素及灾害模式。通过地震波三维成像、探地雷达和三维激光扫描试验分析了岩溶储水构造定位、近接溶洞岩体厚度等岩溶灾害源的风险识别方法。通过数值模拟研究,分析了不同岩溶水压力、不同溶洞规模、不同近接溶洞岩体厚度等条件下,隧道近接溶洞岩体的变形破坏特征及规律。借助于数值分析方法,研究了岩溶突水灾害风险评价,并结合岩溶突水地质灾害临界预警指标统计分析,在风险评价的基础上进行了岩溶突水灾害监测预警系统研究。 主要研究成果如下: (1)研究区隧道洞身多处穿越灰岩、白云岩等可溶性碳酸盐地层及可溶岩与非可溶岩的接触地带,岩溶发育强烈。地表岩溶形态主要为岩溶洼地、落水洞、溶沟、溶槽、石芽等,地下岩溶形态主要为暗河、溶洞、溶蚀裂隙及岩溶管道等,发育标高一般约1200~1500m。隧址区岩溶负地形发育密度大独山隧道约为3个/km2,岗乌隧道为4个/km2,斗磨隧道为4个/km2。大独山隧道D1K855+300~D1K858+918段断层带内,共发育15个对隧道影响较大、规模较大的岩溶负地形,发育频度极高。 (2)涌水量和水压力是决定岩溶突水灾害程度的重要因素,研究发现岩溶突水灾害多数发生在高水压、富水溶腔或破碎带,低水压、富水溶腔也会形成灾害。通过资料总结,分别从岩溶涌水的涌水量级、涌水动态、储水构造及突出物成分方面对岩溶突水灾害的类型和基本模式进行了划分。结合沪昆客专大独山等隧道的岩溶突水灾害地质条件及形成机制,对大独山、岗乌及斗磨三座隧道进行了宏观的溶突水灾害危险段区划,为后期施工安全及风险预警提供了基础资料。 (3)通过现场试验,岩溶隧道不良储水构造可以利用地震波三维层析成像技术进行远距离识别,利用探地雷达技术进行近距离定位,同时结合超前钻孔和三维激光扫描技术对近接溶洞岩体厚度及涌水量等风险源定位和估算。研究发现,地震层析成像图谱中,完整硬质岩层的波速较高,呈现为黄色区域,破碎含水岩层波速较低,呈现蓝色区域,蓝色与黄色斑点状出现对应为含水破碎带,蓝色大面积连通是溶蚀裂隙发育的表现,而蓝色区域立体呈现时多为溶洞发育,纵波与横波之比突然降低是含水体的典型反应。在探地雷达图谱中,充水溶洞的明显特征为雷达波出现异常区,同相轴连续性好,波形均一,电磁波能量呈现规律性衰减;富水裂隙带的明显特征为介电常数增大,电磁波速度下降,同时出现强反射及绕射、散射现象,波形紊乱,同相轴不连续,频率由高向低剧变。 (4)通过数值模拟研究发现,隧道开挖后,近接溶洞岩体最大变形量发生在岩体几何中心部位。当溶洞规模小于隧道直径时,开挖后近接溶洞岩体变形量小,但是高水压情况下也会引起较大的变形量。当溶洞规模近似于或大于隧道直径时,水压作用下岩体变形值较大。 (5)岩溶水压作用下,近接溶洞岩体变形主要出现在开挖工作面0~1.0m的范围内。近接溶洞岩体厚度一定时,随着水压力的增大,变形量逐步增大,当岩溶水压力大于2.0MPa后最大变形量增加的趋势明显。岩溶水压力作用下,近接溶洞岩体厚度小于1.0m时岩体变形量较大,岩体厚度大于2.0m后,随着岩溶水压力的增大,变形量增加不明显。 (6)通过岩溶突水灾害影响和控制因素分析,构建了隧道工程施工期岩溶风险评价指标体系,评价指标体系由岩溶发育程度、地质构造、地形地貌、地表水和地下水系统以及隧道埋深与围岩等六个一级指标和16个二级指标构成。使用模糊信息数学方法,对岩溶突水灾害风险指标进行了量化分析,利用评价指标的权值和模糊信息综合评价方法建立了岩溶突水灾害风险评价模型。结合大独山隧道、岗乌隧道及斗磨隧道等重点地段岩溶突水灾害风险评价实例,证明了隧道工程施工期岩溶突水风险评价指标体系和风险评价模型的适用性。 (7)在岩溶突水灾害风险评价研究成果基础上,以水压力、涌水量及围岩变形量为预警指标,提出了岩溶突水灾害“四色”预警等级及预警指标的分级。借助于超前地质预报与实时监测数据进行了动态化的岩溶突水灾害风险评价,通过预警指标监测数据与风险评价结论的叠加耦合分析,利用GIS地理信息系统和AutoCAD软件二次开发平台,建立了隧道工程施工期岩溶突水灾害监测预警系统。
[Abstract]:In this paper, the major project of Shanghai Kunming high-speed railway and so on, based on summing up a large number of tunnel construction in karst water inrush cases, type of tunnel construction in karst water inrush characteristics, influence factors and disaster control mode. By three dimensional seismic wave imaging, GPR and 3D laser scanning test analysis of karst water storage structure positioning, risk identification method of near rock thickness of karst cave disaster source. Through numerical simulation, analysis of different karst water pressure, different karst scale, different conditions in Karst rock thickness, deformation characteristics and regularity of tunnel adjacent rock cave. With the help of a numerical analysis method of water inrush disaster risk assessment, combined with statistical analysis of karst water inrush geological disasters early warning indicators were critical, karst flood based on risk evaluation Research on damage monitoring and early warning system.
The main research results are as follows:
(1) the study area at the tunnel through the limestone, dolomite and other soluble carbonate strata and karst and non karst contact zone, strong karst development. Karst forms mainly karst depressions, sinkholes, Grike, bath, stone bud, underground karst form main river. Caves, fissures and karst pipes, the general development elevation is about 1200 ~ 1500m. in karst tunnel area in Dushan tunnel negative landform development density is about 3 /km2, Wu Gang tunnel into 4 /km2, 4 /km2. bucket mill tunnel of Dushan tunnel D1K855+300 ~ D1K858+918 segment fault zone, a total of 15 growth the influence of large scale tunnel, karst negative landforms, the development of high frequency.
(2) the water inflow and water pressure is an important determinant of karst water inrush degree. The study found that karst water bursting disaster occurred in the high pressure, rich water cavity or broken zone, low water pressure, rich water cavity will form a disaster. Through the summary, separately from the karst water inflow of water level. Water dynamic, classified storage water structure and outstanding composition types of karst water bursting disaster and basic mode. And combined with the Shanghai Kunming passenger dedicated Dushan tunnel karst water inrush geological conditions of mechanism, Dushan, Ukraine and the gang bucket mill three tunnels were water inrush danger section division of soluble macro, and provide basic information for later construction safety and risk warning.
(3) through the field test, karst tunnel adverse water storage structure can carry out long-distance recognition using 3-D seismic tomography technology, the use of ground penetrating radar technology close positioning, combined with advanced drilling and 3D laser scanning technology of near cave rock thickness and water gushing risk source location and estimated. The study found that the earthquake tomography of high velocity, complete hard rock, it is yellow, broken water rock wave velocity is low, showing the blue area, blue and yellow spots appear corresponding to water fractured zone, blue large area connectivity is fissure development, and blue area stereoscopic more for the karst development, longitudinal and the shear ratio decreased suddenly is a typical reaction containing water. In the GPR profiles, obvious characteristics of water filled cave abnormal area of radar wave, event continuity, The wave form is homogeneous, the energy of electromagnetic wave presents regular attenuation. The obvious characteristic of the water rich fractured zone is the increase of dielectric constant, the decrease of electromagnetic wave velocity, the strong reflection and diffraction, the scattering phenomenon, the disorder of the waveform, the discontinuity of the phase axis, and the frequency changing from high to low.
(4) through numerical simulation study found that after the tunnel excavation, the rock cave near the maximum deformation occurs in parts of the geometric center of rock mass. When the cave is smaller than the diameter of the tunnel, after excavation near the cave rock deformation is small, but high pressure situation will cause the deformation of large scale when the cave is similar to. Or greater than the diameter of the tunnel, the rock deformation under water pressure is larger.
(5) the role of karst water, karst rock near the excavation surface deformation occurred mainly in the range of 0 ~ 1.0m. Near the cave rock thickness, with the increase of water pressure, the deformation gradually increases, when the maximum deformation increase trend of karst water pressure is greater than 2.0MPa. The obvious potential role of karst water under the pressure near the cave rock thickness is less than 1.0m rock large deformation, rock thickness is greater than 2.0m, with the increase of karst water pressure, increasing the amount of deformation is not obvious.
(6) the karst water inrush control and influence factor analysis, construct the karst tunnel construction risk evaluation index system, the evaluation index system of the karst development degree, geological structure, topography, composition of surface water and groundwater systems and the buried depth of the tunnel surrounding rock with six indexes and 16 level two indexes the use of fuzzy information. Mathematical methods for water inrush disaster risk index of quantitative analysis, the evaluation index weights and fuzzy comprehensive evaluation method to establish the karst water disaster risk evaluation model. Combined with the Dushan tunnel, Wu Gang tunnel and bucket mill tunnel and other key areas of karst water outburst disaster risk evaluation example, prove that the applicability of the tunnel construction of karst water inrush risk evaluation index system and risk evaluation model.
(7) in the karst water inrush disaster risk evaluation on the basis of research results, the water pressure, water inflow and the surrounding rock deformation is proposed for early warning indicators, karst water inrush disaster four color early warning indicators and warning level classification. With the help of advanced geological forecast and real-time monitoring data of water inrush disaster risk dynamic evaluation the coupling through superposition of early warning indicators of monitoring data and the conclusion of risk evaluation analysis, using two GIS developing platform of geographic information system and AutoCAD software, established the tunnel construction of karst water inrush disaster monitoring and early warning system.

【学位授予单位】:北京交通大学
【学位级别】:博士
【学位授予年份】:2015
【分类号】:U457.2

【参考文献】

相关期刊论文 前10条

1 吴梦军,许锡宾,刘绪华,敖建华;岩溶对公路隧道围岩稳定性的影响研究[J];地下空间;2003年01期

2 丁万涛;李术才;朱维申;;某海底隧道岩石覆盖厚度及选线方案优化研究[J];地下空间与工程学报;2007年03期

3 汪小敏;黄宏伟;谢雄耀;;软弱围岩隧道施工三维有限元分析[J];地下空间与工程学报;2007年06期

4 丁万涛;李术才;徐帮树;李树忱;;隧道涌水量解析公式在海底隧道工程应用研究[J];地下空间与工程学报;2008年04期

5 杨兵;;宜万铁路马鹿箐隧道岩溶灾害的工程处治技术[J];地下空间与工程学报;2011年03期

6 蒋国云;;深埋隧道岩溶突水安全风险评价模型研究[J];地下空间与工程学报;2012年02期

7 李鹏飞;张顶立;周烨;;隧道涌水量的预测方法及影响因素研究[J];北京交通大学学报;2010年04期

8 吴树仁,金逸民,石菊松,张永双,韩金良,何锋,董诚;滑坡预警判据初步研究——以三峡库区为例[J];吉林大学学报(地球科学版);2004年04期

9 王科,蒋良文,许模,徐则民,黄润秋,屈科;圆梁山隧道毛坝向斜段岩溶洞穴的发育深度探讨[J];成都理工学院学报;2001年02期

10 李昌友;傅鹤林;李亮;郭明香;;某水下隧道施工突涌水与塌方的风险评价[J];铁道科学与工程学报;2009年06期



本文编号:1686668

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/daoluqiaoliang/1686668.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户4f2df***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com