当前位置:主页 > 科技论文 > 路桥论文 >

基于车流量的交通信号控制系统优化设计

发布时间:2018-04-16 02:24

  本文选题:交通信号 + 单交叉路口 ; 参考:《宁夏大学》2015年硕士论文


【摘要】:随着经济的发展,私家车数量的急剧增加,城市交通拥堵问题也日益突出。城市交叉路口作为交通路网控制的关键点,对车辆通行效率影响巨大,交通信号控制的效果直接决定了整个交通网络的性能。为了解决城市交通拥堵问题,虽然尝试了各种办法,例如拓宽道路,单双号限行,还是没有有效的解决拥堵问题。本文对现有交通控制系统研究后发现,现有的交叉口交通信号配时不合理是造成交通拥堵的主要原因,因此本文对交叉口的交通信号控制系统进行优化设计。根据实时采集到的交通流数据应用遗传算法对交通信号控制系统进行合理动态优化配时设计,在一定程度上达到缓解交通拥堵,减少车辆延误,减少车辆排队长度,提高车辆通行率的目的。本文首先在分析现有单交叉口的信号控制方法基础上,针对当前城市交通动态变化的特性,指出了传统控制方式的不足和缺陷,然后对遗传算法的基本原理、基本要素等进行分析后,针对基本遗传算法在应用中的局限性,对算法进行改进来提高运行效率和求解的质量。然后在分析城市单交叉路口交通流特性的基础上以银川市贺兰山路和正源街的十字交叉路口的交通控制信号为优化目标,首先建立了以车辆平均延误时间最短,以相位有效绿灯时间和饱和度为约束条件的非线性函数模型,利用改进的遗传算法对模型进行优化求解,得到在固定周期下的最优配时方案。仿真结果表明利用改进的遗传算法对模型优化后交叉口车辆平均延误有了明显的减少。其次,针对交叉路口的交通拥堵情况,建立了以控制周期内路口的总的车辆排队长度最小为目标,以相位有效绿灯时间和信号周期时长为控制变量的交通信号优化模型,利用改进的遗传算法对模型进行仿真计算,结果表明优化后控制周期内路口的总延误排队车辆数有了明显的减少。
[Abstract]:With the development of economy, the number of private cars increases rapidly, and the problem of urban traffic congestion becomes more and more serious.As the key point of traffic network control, urban intersections have a great impact on the traffic efficiency. The effect of traffic signal control directly determines the performance of the whole traffic network.In order to solve the problem of urban traffic congestion, although various methods have been tried, such as widening roads, restricting traffic by single and even numbers, the problem of congestion has not been solved effectively.After studying the existing traffic control system, it is found that the unreasonable traffic signal timing is the main cause of traffic congestion, so the traffic signal control system at the intersection is optimized in this paper.According to the traffic flow data collected in real time, the genetic algorithm is used to optimize the traffic signal control system in order to reduce the traffic congestion, reduce the vehicle delay and reduce the queue length to a certain extent.The purpose of increasing the vehicle traffic rate.Based on the analysis of the existing signal control methods of single intersection, this paper points out the shortcomings and defects of the traditional control methods in view of the characteristics of the current urban traffic dynamic change, and then analyzes the basic principles of genetic algorithm.In view of the limitation of the basic genetic algorithm in application, the basic elements are analyzed, and the algorithm is improved to improve the running efficiency and the quality of the solution.Then on the basis of analyzing the traffic flow characteristics of the single intersection of the city, the traffic control signal of the intersection of Helan Mountain Road and Zhengyuan Street in Yinchuan City is taken as the optimization goal. Firstly, the shortest average delay time of the vehicle is established.Based on the nonlinear function model with phase effective green time and saturation as constraints, the improved genetic algorithm is used to optimize the model, and the optimal timing scheme under fixed period is obtained.The simulation results show that the improved genetic algorithm can significantly reduce the average vehicle delay after model optimization.Secondly, the traffic signal optimization model is established to minimize the total vehicle queue length and take the phase effective green time and the signal cycle time as the control variables, aiming at the traffic congestion at the intersection.The improved genetic algorithm is used to simulate the model. The results show that the total number of queue vehicles at the intersection within the control cycle has been significantly reduced after the optimization.
【学位授予单位】:宁夏大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:U491.51

【参考文献】

相关期刊论文 前2条

1 黄辉先,史忠科;城市单交叉路口交通流实时遗传算法优化控制[J];系统工程理论与实践;2001年03期

2 李秀平,刘智勇,吴今培;平面交叉路口的神经网络自学习控制方案[J];信息与控制;2001年01期

相关博士学位论文 前1条

1 陈小锋;城市交通信号动态优化控制技术研究[D];西北工业大学;2003年

相关硕士学位论文 前1条

1 付绍昌;城市智能交通信号控制方法及其仿真研究[D];湘潭大学;2006年



本文编号:1756899

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/daoluqiaoliang/1756899.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户13b60***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com