桥台及台后填土破坏的桥梁纵向地震碰撞响应
发布时间:2018-04-27 14:06
本文选题:桥梁工程 + 桥梁抗震 ; 参考:《长安大学学报(自然科学版)》2015年04期
【摘要】:以汶川地震中发生严重破坏的高原大桥为工程背景,采用"多模型多平台"分析技术研究了主梁与桥台及台后填土的纵向碰撞效应及对全桥地震反应的影响。首先利用ANSYS软件建立桥台及台后填土非线性数值分析实体模型,基于静力Pushover分析模拟其在主梁撞击下水平力-位移关系。将上述力-位移关系引入到MIDAS软件中,主要以间隙单元模拟桥台及台后填土与主梁的碰撞作用,并建立全桥抗震分析模型。通过非线性时程分析及与震害对比,讨论了桥台及台后填土破坏、伸缩缝处安装碰撞缓冲装置等情况下主梁与桥台间的纵向碰撞响应。研究结果表明:桥台及台后填土破坏将增大桥台伸缩缝处桥台与主梁间的相对位移,增加了落梁风险;由于地震动输入和桥台位置不同,碰撞缓冲装置对台、梁间碰撞力的影响存在不确定性,建议碰撞缓冲装置刚度宜取为桥台及台后填土整体抗推刚度的1%~5%,并优先选用耗能型。
[Abstract]:Taking the plateau bridge seriously damaged in Wenchuan earthquake as the engineering background, the longitudinal collision effect between the main beam and the bridge abutment and the fill behind the abutment and its effect on the seismic response of the whole bridge are studied by using the "multi-model and multi-platform" analysis technique. Firstly, the nonlinear numerical analysis model of bridge abutment and backfill is established by using ANSYS software, and the horizontal force-displacement relationship under the impact of main beam is simulated based on static Pushover analysis. The above force-displacement relation is introduced into MIDAS software. The impact of bridge abutment and backfill with main beam is simulated with clearance element, and the seismic analysis model of the whole bridge is established. Through nonlinear time history analysis and comparison with earthquake damage, the longitudinal impact response between main beam and abutment is discussed under the condition of bridge abutment and embankment failure and collision buffer installation at expansion joint. The results show that the relative displacement between abutment and main beam at abutment expansion joint will be increased and the risk of falling beam will be increased because of the failure of fill soil at abutment and behind abutment, and the collision buffer device is opposite abutment due to the difference between the input of ground motion and the position of abutment. The impact of impact force between beams is uncertain. It is suggested that the stiffness of the impact buffer should be 1 / 5 of the overall anti-push stiffness of the abutment and the backfill of the abutment, and the energy dissipation type should be preferred.
【作者单位】: 大连海事大学道路与桥梁工程研究所;辽宁省公路工程重点实验室;
【基金】:国家自然科学基金项目(51008041,51178071) 教育部新世纪优秀人才支持计划项目(NCET-12-0751) 中央高校基本科研业务费专项资金项目(3132014073,3132014326)
【分类号】:U443.21;U442.54
【相似文献】
相关期刊论文 前10条
1 陈恭代;;桥涵台后填土病害产生原因与防治[J];公路与汽运;2007年03期
2 罗运蒋;桥台桩基考虑台后填土的计算[J];铁道建筑;1984年01期
3 丁立新;;桥台台后填土对桩基产生的附加水平力计算[J];华东公路;1991年01期
4 高圣泉;桥台后填土对桩基产生的附加水平力计算[J];江苏水利;2004年09期
5 张东曾;李金晖;;桥梁台后填土病害处理[J];民营科技;2009年08期
6 戴鹏飞;杨晓东;刘萌成;冯万里;;桥台后填土沉降机理分析[J];交通世界(建养.机械);2011年04期
7 罗嘉运;;台后填土和坡脚排水层[J];路基工程;1987年04期
8 王军华;王北松;;桥头“跳车”的原因及防治措施[J];科技信息(科学教研);2007年29期
9 吴小建;;高速公路台后填土的粘弹塑性BIOT固结有限元分析[J];西部探矿工程;2007年02期
10 柏松平;桥头跳车及其处理措施[J];云南交通科技;2000年06期
,本文编号:1811037
本文链接:https://www.wllwen.com/kejilunwen/daoluqiaoliang/1811037.html