浙青路面和水泥混凝土路面在不同降雨情景下动态径流系数试验研究
本文选题:人工模拟降雨装置 + 雨型 ; 参考:《安徽工业大学》2017年硕士论文
【摘要】:近年来,极端天气频繁出现,短时间局部暴雨不断发生,致使城市内涝频发。径流系数是城市雨水管渠系统设计的重要参数。径流系数的取值主要是参考《室外排水设计规范》中的规定,而该规范中径流系数的取值是根据地表类型来选取。已有研究表明径流系数是一个动态变量,在降雨过程中不断发生着改变。掌握径流系数的动态变化规律是合理设计城市雨水管渠系统和低影响开发雨水系统的一项关键基础性工作。因此开展基于降雨过程的典型不透水地表动态径流系数的研究具有重要现实意义,将为城市排水系统规划设计和海绵城市建设提供科学支撑。本研究以安徽省马鞍山市为背景,通过发明研制的人工模拟降雨装置,选择典型不透水下垫面沥青路面和水泥混凝土路面,探讨沥青路面和水泥混凝土路面在不同降雨情景下(降雨雨型、降雨量、降雨历时、重现期等)径流系数的动态变化规律。在分析比较现有人工模拟降雨装置功能和特点的基础上,发明并研制了一种能产生芝加哥雨型等较为复杂雨型的人工模拟降雨装置,该装置包括供水系统、流量测量切换系统、可调升降支架系统、喷头系统和产生芝加哥雨型等的流量程序控制系统,能够实现试验所需的芝加哥雨型和均匀雨型等。对于沥青路面,实验选取芝加哥雨型作为降雨雨型,降雨历时分别选取30min、45min、60min、90min、120min,降雨重现期分别选取1a、2a、3a、5a、10a、20a、30a、50a、100a。在芝加哥雨型下,探讨沥青路面在不同降雨历时、不同降雨重现期和不同降雨强度对动态径流系数的影响。得到了不同降雨情景下的降雨和径流的变化过程。对试验数据进行分析拟合得出降雨重现期、降雨历时和降雨强度与径流系数关系方程式。通过拟合可以看出瞬时降雨强度峰值和平均值分别与瞬时径流系数峰值和平均值呈对数关系;降雨历时与瞬时径流系数峰值呈对数关系,与瞬时径流系数平均值呈线性关系;降雨重现期与瞬时径流系数峰值和平均值都呈现出对数关系。对于水泥混凝土路面,分别选取芝加哥雨型和均匀雨型作为试验降雨雨型,降雨历时为30min、60min、120min,降雨重现期分别选取2a,3a,5a,10a,20a。试验结果显示,降雨雨型的不同致使产流初始时间、瞬时径流系数变化趋势和峰值及径流截止时间等的不同。降雨强度与瞬时径流系数呈线性关系,瞬时径流系数随降雨强度的增大而增大。在一定条件下瞬时径流系数随降雨量的增大而增大。降雨历时与瞬时径流系数在降雨初期随降雨的进行呈对数增长,当降雨进行一段时间后瞬时径流系数逐渐趋向于1。利用SPSS软件进行定量分析,得到了各影响因素与瞬时径流系数的定量关系。对于沥青路面,降雨强度对径流系数影响最大,降雨历时影响次之,重现期影响最小。对于水泥混凝土路面,瞬时径流系数的大小由降雨强度、降雨量和降雨历时等影响因素共同决定。瞬时径流系数是由多因素决定的动态变量。通过对试验结果分析得出,沥青路面和水泥混凝土路面径流系数动态变化随降雨历时、降雨强度和降雨量等影响影响因素在变化趋势上类似。
[Abstract]:In recent years, the frequent occurrence of extreme weather and the continuous occurrence of short time local rainstorms make urban waterlogging frequent. The runoff coefficient is an important parameter in the design of urban rainwater pipe and canal system. The value of runoff coefficient is mainly reference to the regulations of the outdoor drainage design code, and the value of runoff coefficient in this specification is selected according to the type of the surface. The current research shows that the runoff coefficient is a dynamic variable and is constantly changing during the rainfall process. To master the dynamic change law of the runoff coefficient is a key basic work for the rational design of the urban rainwater pipe and canal system and the low impact development of the rainwater system. The study of coefficient is of great practical significance. It will provide scientific support for the planning and design of urban drainage system and the construction of the sponge city. This study takes the Ma'anshan city of Anhui as the background to select the typical impermeable surface of asphalt pavement and cement concrete pavement through the artificial simulated rainfall device developed, and discuss the asphalt pavement and cement. On the basis of analyzing and comparing the functions and characteristics of the existing artificial rainfall equipment, a kind of artificial simulated rainfall device, which can produce more complex rain types such as Chicago rain type, is developed and developed. It includes the water supply system, the flow measurement switching system, the adjustable lifting support system, the sprinkler system and the flow program control system of the Chicago rain type, which can realize the Chicago rain type and the uniform rain type needed for the test. For the asphalt pavement, the rain type of Chicago is selected as the rainfall rainfall pattern, and the rainfall duration is selected as 30min, 45mi N, 60min, 90min, 120min, select 1a, 2a, 3a, 5A, 10a, 20a, 30a, 50a, respectively, under the rain pattern of Chicago, to discuss the effect of different rainfall duration and rainfall intensity on the dynamic runoff coefficient in different rainfall periods, and get the change process of rainfall and runoff under different rainfall scenarios. The relation equation of rainfall recurrence period, rainfall duration and rainfall intensity and runoff coefficient is obtained by line analysis fitting. Through fitting, it can be found that the peak and average value of instantaneous rainfall intensity are logarithmic relation with the peak and average of instantaneous runoff coefficient, and the relationship between rainfall duration and the peak of instantaneous runoff coefficient is logarithmic, and the average of instantaneous runoff coefficient is average. The rainfall recurrence period has a logarithmic relationship with the peak and average value of the instantaneous runoff coefficient. For the cement concrete pavement, the rain type and the uniform rain type in Chicago are selected as the experimental rainfall patterns. The rainfall duration is 30min, 60min, 120min, and the rainfall recurrence period is selected as 2a, 3a, 5A, 10a, 20A. test results show rain rain. The variation trend of the runoff coefficient and the peak and runoff cut-off time are different. The rainfall intensity has a linear relationship with the instantaneous runoff coefficient, and the instantaneous runoff coefficient increases with the increase of rainfall intensity. Under certain conditions, the instantaneous runoff coefficient increases with the increase of rainfall. Rainfall duration and instantaneous runoff coefficient are increased. The runoff coefficient grows logarithmically with the rainfall in the early period of rainfall. The instantaneous runoff coefficient gradually tends to 1. by SPSS software after a period of rainfall. The quantitative relationship between the influence factors and the instantaneous runoff coefficient is obtained. For the asphalt pavement, the rainfall intensity has the greatest influence on the runoff coefficient and the rainfall duration. For cement concrete pavement, the instantaneous runoff coefficient is determined by the influence factors such as rainfall intensity, rainfall and rainfall duration. The instantaneous runoff coefficient is a dynamic variable determined by multiple factors. Through the analysis of the experimental results, the runoff coefficient of asphalt pavement and cement concrete pavement changes dynamically. With the duration of rainfall, rainfall intensity and rainfall influence factors are similar.
【学位授予单位】:安徽工业大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:U417.3;TU992
【参考文献】
相关期刊论文 前10条
1 刘昌明;张永勇;王中根;王月玲;白鹏;;维护良性水循环的城镇化LID模式:海绵城市规划方法与技术初步探讨[J];自然资源学报;2016年05期
2 武建奎;;城市建设中雨水径流系数的规划控制[J];山西建筑;2016年06期
3 李洋;;城市内涝原因及对策浅析[J];安徽建筑;2011年01期
4 唐宁远;车伍;潘国庆;;城市雨洪控制利用的雨水径流系数分析[J];中国给水排水;2009年22期
5 刘兴坡;;基于径流系数的城市降雨径流模型参数校准方法[J];给水排水;2009年11期
6 姚馨源;郭高;范洪才;;市政排水管道设计参数选用及管线布局方式[J];城市道桥与防洪;2009年03期
7 董欣;杜鹏飞;李志一;喻峥嵘;王锐;黄金良;;城市降雨屋面、路面径流水文水质特征研究[J];环境科学;2008年03期
8 郭雪莲;许嘉巍;吕宪国;;城市典型下垫面空间构型对降水蓄渗率的影响[J];水土保持学报;2007年04期
9 车伍;唐宁远;张炜;孟光辉;刘红;何建平;汪洪玲;;我国城市降雨特点与雨水利用[J];给水排水;2007年06期
10 孙明;;平原区天然降雨极值强度与径流系数的关系研究[J];海河水利;2006年06期
相关博士学位论文 前2条
1 汪明明;雨水池设计理论研究[D];北京工业大学;2008年
2 任伯帜;城市设计暴雨及雨水径流计算模型研究[D];重庆大学;2004年
相关硕士学位论文 前6条
1 罗贤达;城市下垫面地表径流过程模拟研究与分析[D];苏州科技学院;2014年
2 梁于婷;降雨径流系数影响因素的试验研究[D];湖南大学;2014年
3 康威;绿色建筑小区不透水面径流控制技术研究[D];重庆大学;2014年
4 孔花;山地城市绿地和水泥道路径流系数的研究[D];重庆大学;2012年
5 陈明燕;山地城市雨水系统数值模拟及优化设计[D];重庆大学;2012年
6 武晟;西安市降雨特性分析和城市下垫面产汇流特性实验研究[D];西安理工大学;2004年
,本文编号:1819836
本文链接:https://www.wllwen.com/kejilunwen/daoluqiaoliang/1819836.html