箱形连续梁桥转体施工监控与局部受力研究
本文选题:箱形连续梁 + 转体桥 ; 参考:《兰州交通大学》2017年硕士论文
【摘要】:国民经济水平的提高促进了交通基础设施的飞速发展,与复杂交通网息息相关的桥梁工程也处于开拓创新的阶段。随着科技不断进步,施工工艺也日趋丰富和成熟,作为跨越繁忙既有线路的转体桥在众多桥型之中有其独特的优势,既不影响施工进度又保证了施工安全。转体桥应用前景广阔,并且有一定的科研价值。本文以工程实例某上跨铁路(55+100+55)m箱形连续梁转体桥为研究对象,借助Midas Civil和Midas Fea软件模拟分析转体桥施工监控和局部受力情况。根据本桥实际施工方式,使用Midas Civil对梁体各施工阶段模拟分析,将提取的各阶段理论值与现场实测值作对比,分析数据并作有效调整,确保梁体线形和受力在合理范围之内。利用球铰转动法对转体T构进行称重试验,分析试验结果得到摩阻系数、不平衡力矩、摩阻力矩和偏心距。通过合理配重消除偏心距的不利影响,确保转动时撑脚处于悬空状态,减小转动过程中转动设备的牵引力,保证大桥安全转体。使用Midas Fea对下承台进行水化热模拟分析,分析时考虑有冷却管和无冷却管两种工况。绑扎下承台钢筋骨架时在中心处埋设温度传感器,记录下承台混凝土浇筑后14天内中心处温度值。将下承台中心处温度理论值与实测值比较,监控下承台温度场变化。使用Midas Fea对转动体系模拟分析,求解球铰接触面竖向位移和竖向压应力并与理论值作比较,验证理论计算的正确性和接触面竖向压应力分布形式;对比分析不同梁体重心偏移值对球铰、下承台竖向位移、球铰顺桥向水平压应力和球铰竖向压应力的影响以及本桥重心偏移值的安全范围;分析上承台中预应力钢束是否能够减小上下承台和球铰竖向压应力最大值,使转动体系更加安全;桩基以距离转动中心距离的不同分组,分析各组桩基受力大小和每组分配比例,得出桩基受力分布形式,为此类问题作设计参考。
[Abstract]:The improvement of the national economic level has promoted the rapid development of the traffic infrastructure. The bridge engineering which is closely related to the complex traffic network is also in the stage of innovation and innovation. With the continuous progress of science and technology, the construction technology is becoming more and more rich and mature. As a transition bridge across the busy and existing lines, it has its unique advantages in many bridges. The construction progress has been ensured and the construction safety is ensured. The application prospect of the rotating bridge is broad and has a certain value of scientific research. In this paper, a project example of a 55+100+55 m box type continuous girder is taken as the research object, and the construction monitoring and local stress conditions of the rotating bridge are simulated and analyzed with the aid of Midas Civil and Midas Fea software. Construction mode, using Midas Civil to simulate the construction phase of the beam body, compare the theoretical values of each stage with the field measured values, analyze the data and make effective adjustment to ensure that the beam shape and force are within a reasonable range. Using the ball hinge rotation method to carry on the weighing test of the rotating T structure, and analyze the test results to get the friction coefficient, Balance moment, friction torque and eccentricity. Through reasonable counterweight to eliminate the adverse effect of eccentricity, ensure that the leg is in a suspended state during rotation, reduce the traction force of the rotating equipment in the process of rotation, and ensure the safe rotating body of the bridge. Midas Fea is used to simulate the hydration heat of the lower cap, and the cooling pipe and the non cooling tube are considered in the analysis, two The temperature sensor is embedded at the center of the reinforced skeleton of the bearing platform to record the temperature value at the center of the center 14 days after the concrete pouring under the cap of the bearing platform. The temperature field of the cap at the lower cap center is compared with the measured value to monitor the change of the temperature field under the bearing platform. The vertical displacement of the contact surface of the ball hinge is solved by using Midas Fea. The vertical compressive stress is compared with the theoretical value to verify the correctness of the theoretical calculation and the distribution of vertical pressure stress on the contact surface, and to compare and analyze the effect of the deviation of the center of gravity of different beams on the spherical hinge, the vertical displacement of the lower cap, the horizontal pressure stress and the vertical pressure stress of the ball hinge, and the safety range of the offset value of the center of gravity of the bridge. Whether the prestressed steel beam in the platform can reduce the maximum vertical pressure stress of the upper and lower caps and the ball hinges, make the system more safe. The pile foundation is divided into different groups of distance from the center of rotation. The force size of pile foundation and the proportion of each group are analyzed, and the distribution form of pile foundation is obtained, which can be used as a reference for this kind of design.
【学位授予单位】:兰州交通大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:U445.4
【参考文献】
相关期刊论文 前10条
1 蔡进;;转体桥施工技术分析[J];科技创新与应用;2017年04期
2 王伟;;转体桥不平衡重称重试验研究[J];北方交通;2016年07期
3 申海东;;转体桥施工关键部位控制分析[J];中国新技术新产品;2016年13期
4 贾优秀;;桥梁平面转体施工基本理念及中心承重转体关键控制技术[J];国防交通工程与技术;2016年S1期
5 王逸峰;;跨既有铁路线大跨连续梁桥转体施工与控制技术研究[J];建筑技术开发;2016年03期
6 宋满荣;柳炳康;杨玉龙;冯然;;跨大秦铁路大桥转体称重试验及配重研究[J];世界桥梁;2015年06期
7 黄力民;靳国柱;;曲线大吨位连续梁转体控制技术[J];铁道建筑技术;2015年05期
8 贾生旭;;客运专线大跨连续刚构桥悬臂施工的应力监控与研究[J];铁道建筑技术;2015年05期
9 包存文;;连续梁悬臂施工监控技术探讨[J];甘肃科技;2014年23期
10 杨永强;;邢衡高速公路立交桥上跨既有线转体称重试验研究[J];铁道建筑;2013年08期
相关硕士学位论文 前9条
1 张航;连续梁桥墩顶水平转体施工监控技术研究[D];湖南科技大学;2016年
2 朱盟;大体积承台水化热对结构的影响分析[D];长安大学;2014年
3 常婵子;大跨度桥梁桥墩承台水化热分析[D];中南大学;2013年
4 赵勇为;转体施工中连续刚构梁桥力学特性分析[D];兰州交通大学;2013年
5 方雷;预应力混凝土连续梁施工控制研究[D];湘潭大学;2013年
6 何俊;大跨度连续梁桥转体施工力学特性分析[D];兰州交通大学;2012年
7 杨胜;高墩大跨连续刚构桥悬臂施工线形控制及应力监控研究[D];长沙理工大学;2006年
8 郭华;高层建筑结构有限元分析[D];太原理工大学;2004年
9 姚昌荣;大跨度桥梁的施工控制理论与实践[D];西南交通大学;2004年
,本文编号:1871232
本文链接:https://www.wllwen.com/kejilunwen/daoluqiaoliang/1871232.html